Flink(三)【运行时架构】

前言

        今天学习 Flink 的一些原理性的东西,比较偏概念,但是十分重要。有人觉得上来框框敲代码才能学到东西,那是狗屁不通的道理(虽然我以前也这么认为)。个人认为,学习 JavaEE那些框架,你上来就敲代码确实也可以,没有太多难理解的东西;但是对于大数据、分布式包括我们学的很多计算机原理、计算机网络这种理论性强的学科,了解原理是十分有必要的,代码终将容易忘记,但是原理只要你能理解,它就不会从你的大脑里失去。就像喜欢的女孩子一样,你能懂她理解她,那她就离不开你,可是如果你在你们每次的交往过程都只顾自己的感受,用你学的地摊文化去逗她开心,那么我想她并不会觉得你是一个有趣的人。但是知道学习的方法再去懂女孩子可不是一件容易的事情啊!知识是死的,它就在那,你学知识就是你的。可人不一样,人不是物,人的认知广,就像你喜欢的人,她不是每天就和你一个交往,她可能和好人学会了好的品行、和坏人学会了坏的品行,从环境受影响又有了别的特质,所以你想了解她并不是一件容易的事情哇。而且还有一条,人家给不给你这个了解的机会还另说呢。就像我现在,之前无话不谈的人,因为各种复杂的事情影响下,她再不主动找我,我又不想厚着脸贴人家。知识它越捂越热,但是人直接的心要是离开了,就很难挽回了。害,我应该还没到那个阶段吧,到时候我自己问问。

        人与人之间情断义绝,并不需要什么具体的理由。就算表面上有,也很可能只是心已经离开的结果,事后才编造出的借口而已。因为倘若心没有离开,当将会导致关系破裂的事态发生时,理应有人努力去挽救。如果没有,说明其实关係早已破裂。                -《解忧杂货店》

下次尽量别前言内容比内容都多,尽量尽量。

核心组件

1、JobManager

        控制 Flink 应用程序执行、任务管理和调度的核心。每一个 Flink 应用程序由唯一的 JobManager 管理控制。

        JobManager有三大组件:

JobMaster

  • JobMaster 是 JobManager 中最核心的组件,负责处理单独的作业(一个 JobMaster 对应一个 Job,因为一个 Flink 应用程序可能有多个作业,所以就可以有多个 JobMaster)。
  • 在作业提交时,JobMaster 先就收到要执行的应用(客户端发送来的: Jar包、数据流图(dataflow graph)和作业图(JobGraph))。
  • JobMaster 会把作业图(JobGraph)转换成一个物理层面的数据流图,这个图被叫做 “执行图 ” (ExecutionGraph),它包含了所有可以并发执行的任务(可以并行执行多少任务,就分配给几个 TaskManager 的 TaskSlot 去)。JobManager 会向资源管理器(ResourceManager 注意:是Flink的资源管理器不是 YARN)发送请求,申请执行任务所需要的资源(如果资源不足,要么直接挂掉,要么就等待)。获得足够的资源后,就会将执行图(ExecutionGraph)发送给真正运行它们的 TaskManager 上。
  • 在运行过程中,JobMaster 会负责所有需要中央协调的操作,比如检查点(checkpoint)的协调(定期做一个存盘,防止发生故障,状态丢失掉)。

ResourceManager

        这里的 ResourceManager 指的是 Flink 自带的 ResourceManager ,当然也可以用 YARN 这样的资源管理平台来代替管理。

  •  一个 Flink集群中,只有一个 ResourceManager ,所谓的资源,指的就是我们的 任务槽(TaskSlot) 。TaskSlot 是能够执行并行任务的最小单位,它包含了机器用来执行计算的一组 CPU 和 内存资源。每个并行的任务都会分配到一个任务槽上去执行。
  • 在有 YARN 做资源提供平台的情况下,当新的作业申请资源时,ResourceManager 会将有空闲槽位的 TaskManager 分配给 JobMaster。如果 ResourceManager 没有足够的任务槽,它还可以向资源提供平台发起会话,请求提供启动 TaskManager 进程的容器。另外,ResourceManager 还负责停掉空闲的 TaskManager,释放计算资源。

Dispatcher

  • Dispatcher 主要负责提供一个 REST 接口,用来提交应用,并且负责为每一个新提交的作业启动一个新的 JobMaster 组件。Dispatcher 也会启动一个 Web UI,用来方便地展示和监控作业执行的信息。Dispatcher 在架构中并不是必需的,在不同的部署模式下可能会被忽略掉(比如和一些资源管理平台集成起来之后,因为资源管理平台可以接受作业的提交)。

2、TaskManager

每一个 TaskManager 可以看做是一个 JVM 进程。

  • 真正的工作者,在一个 Flink 集群中通常有多个 TaskManager 运行,每一个 TaskManager 都包含了一定数量的任务槽(task slots)。Task Slot 的数量限制了 TaskManager 能够并行处理的任务数量。
  • 启动之后,TaskManager 回向 RsourceManager 注册自己的 TaskSlot (汇报自己有多少可用的资源),收到 RsourceManager 的指令后,TaskManager 就会将一个或多个 TaskSlot 提供给 JobMaster 去调用。JobMaster 就可以向 TaskSlot 分配任务(Tasks)去执行了。
  • 在执行过程中,TaskManager 可以缓冲数据,还可以跟其他运行同一应用的 TaskManager交换数据。

Flink 作业提交流程

1、抽象视角

(1) 一般情况下,由客户端(App)通过分发器提供的 REST 接口,将作业提交给JobManager(提交给 JobManager 的作业已经被处理过了,代码已经被解析成了作业)。
(2)由分发器启动 JobMaster,并将作业(包含 JobGraph)提交给 JobMaster。
(3)JobMaster 将 JobGraph 解析为可执行的 ExecutionGraph,得到所需的资源数量,然后向资源管理器(Flink自带的ResourceManager或者YARN)请求资源(taskslots)。
(4)资源管理器判断当前是否由足够的可用资源;如果没有,启动新的 TaskManager。
(5)TaskManager 启动之后,向 ResourceManager 注册自己的可用任务槽(slots)。
(6)资源管理器通知 TaskManager 为新的作业提供 slots。
(7)TaskManager 连接到对应的 JobMaster,提供 slots。
(8)JobMaster 将需要执行的任务分发给 TaskManager。
(9)TaskManager 执行任务,互相之间可以交换数据。

2、独立模式(Standalone)

独立模式,就是不借助外部资源管理框架的模式。在独立模式(Standalone)下,只有会话模式和应用模式两种部署方式(单作业模式在Flink中是无法直接运行的,需要借助外部资源管理框架如YARN等)。

会话模式和应用模式的流程是相似的:TaskManager 都需要手动启动,所以当 ResourceManager 收到 JobMaster 的请求时,会直接要求 TaskManager 提供资源。而 JobMaster 的启动时间点,会话模式是预先启动(集群先启动再等待作业的提交),应用模式则是在作业提交时启动(而且应用模式下,代码是在 JobManager 中运行的,所以客户端只提交代码,真正的作业图是由JobManager执行代码后生成的)。

主要注意如果资源不足的情况下,会话模式是无法再去启动 TaskManager 的,因为集群是提前启动好的,资源数量是固定的。

3、YARN 模式

3.1、会话模式(yarn-session)

在会话模式下,我们需要先启动一个 YARN session,这个会话会创建一个 Flink 集群。

这里只启动了 JobManager,而 TaskManager 可以根据需要动态地启动。在 JobManager 内部,由于还没有提交作业,所以只有 ResourceManager 和 Dispatcher 在运行(JobMaster 并没有启动,因为我们知道,一个JobMaster 对应一个作业,而一个作业流图中可能包含多个作业,就绪需要启动多个 JobMaster)。

(1)客户端通过 REST 接口,将作业(代码已经被客户端运行,已经生成了作业图和数据流图)提交给分发器。
(2)分发器启动 JobMaster,并将作业(包含 JobGraph)提交给 JobMaster。
(3)JobMaster 向资源管理器请求资源(taskslots)。
(4)资源管理器向 YARN 的资源管理器请求 container 资源。
(5)YARN 启动新的 TaskManager 容器。
(6)TaskManager 启动之后,向 Flink 的资源管理器注册自己的可用任务槽。
(7)资源管理器通知 TaskManager 为新的作业提供 slots。
(8)TaskManager 连接到对应的 JobMaster,提供 slots。
(9)JobMaster 将需要执行的任务分发给 TaskManager,执行任务。

可见,整个流程除了请求资源时要“上报”YARN 的资源管理器(因为Flink 的资源管理器是没有资源的,所以需要和 YARN 去申请),其他的和上面的抽象流程几乎完全一样。

3.2、单作业模式(per-job)

(1)客户端将作业提交给 YARN 的资源管理器,这一步中会同时将 Flink 的 Jar 包和配置上传到 HDFS,以便后续启动 Flink 相关组件的容器。
(2)YARN 的资源管理器分配 Container 资源,启动 Flink JobManager,并将作业提交给JobMaster。这里省略了 Dispatcher 组件。
(3)JobMaster 向资源管理器请求资源(slots)。
(4)资源管理器向 YARN 的资源管理器请求 container 资源。
(5)YARN 启动新的 TaskManager 容器。
(6)TaskManager 启动之后,向 Flink 的资源管理器注册自己的可用任务槽。
(7)资源管理器通知 TaskManager 为新的作业提供 slots。
(8)TaskManager 连接到对应的 JobMaster,提供 slots。
(9)JobMaster 将需要执行的任务分发给 TaskManager,执行任务。

可见,区别只在于 JobManager 的启动方式,JobManager 是由 YARN 来启动的;而 JobMaster是由YARN的ApplicationMaster创建的;在YARN模式下,Flink的JobManager会作为YARN的一个ApplicationMaster运行,并由YARN的ResourceManager管理和调度。

当第 2 步作业提交给JobMaster,之后的流程就与会话模式完全一样了。

Flink 运行时的重要概念

1、数据流图(DataFlow)

        所有的 Flink 程序都是可以由三部分组成的:Source、Transformation 和 Sink 。

        其中,Source 负责读取数据,Transformation 负责利用各种算子对数据进行加工处理,而 Sink 负责数据的输出。

比如上面代码中,Transformation 对应的操作就有:flatMap 和 sum。而 keyBy 并不能算是一个算子(operator),因为 keyBy 的返回值并不是一个 xxxOperator 的类型。

  • 在程序运行时,Flink 上运行的应用程序会被映射成“逻辑数据流”(dataflow)
  • 每一个 dataflow 以一个或多个 sources 开始,以一个或多个 sinks 结束。dataflow 类似于任意的有向无环图(DAG)
  • 在大部分情况下,程序中的转换运算(transformation)跟 dataflow 中的算子(operator)是一一对应的关系

我们以 Standalone 模式启动我们的 Flink 集群(standalone模式提供的 Web UI 是我们 master 的8081端口,也就是hadoop102:8081),提交我们上面的代码。

我们可以看到,keyBy 和 sum 操作被看做一个算子操作(Keyed Aggregation)。

2、并行度(parallelism)

并行度针对的我们的某一个算子的操作而言的,所以不同的操作往往并行度并不相同,比如我们上面数据流图中 source  的并行度就是 1 而 flatMap 、keyed Aggregation 和 sink 操作的并行度都是 2。

  • 每一个算子(operator)可以包含一个或多个子任务(operator subtask),这些算子任务在不同的线程(一个TaskManager 可以看做一个JVM进程)、不同的物理机或者不同的容器中完全独立低运行。
  • 一个特定的算子的子任务(subtask)被称之为其并行度。

任务并行

  • 比如上面的图中,一共有4个任务:source、map、keyBy-window-aply 和 sink,它们 4 个是完全并行执行的。

如果数据量很大,我们的这些个任务显然是满足不了的,比如来100亿个数,这样不管是 source 读取的时候还是后面的 map 操作,尽管都是并行执行,但面对这么大的数据量还是能力有限的。

数据并行

  • 同一个操作(同一个算子,比如 source、map、sink 等)可以复制多份(也就是并行子任务,比如上面复制了多个source),同时来进行数据的处理。

像我们 Spark 的话是按照阶段进行的,所以前后不同阶段的任务没法并行。

而我们也可以在算子的相关代码中进行设置(setParallelism方法)。

SingleOutputStreamOperator<Tuple2<String, Long>> wordAndOne = lineDS.flatMap((String line, Collector<Tuple2<String, Long>> out) -> {String[] words = line.split(" ");for (String word : words) {out.collect(Tuple2.of(word, 1L));}}).setParallelism(2).returns(Types.TUPLE(Types.STRING, Types.LONG));

另外,我们也可以直接调用执行环境的 setParallelism()方法,全局设定并行度(并不提倡):

env.setParallelism(2);

相当于在 Web UI 端:

 

优先级:集群环境conf/flink-conf.yaml中paralleism.default=x 的值 < Web 端 < 全局并行度 < 代码中每个算子设置的并行度

还有一种 特殊的,比如之前我们用到的读取 socket 文本流的算子 socketTextStream,它本身就是非并行的 Source 算子,所以无论怎么设置,它在运行时的并行度都是 1,对应在数据流图上就只有一个并行子任务。

3、算子链

仔细观察上面Web UI 的这个计划图,可以看到,并不是每个算子单独作为一个任务。很明显,最后一步把两个任务合并成了一个大任务。

算子之间的数据传输

一个程序中,不同的算子可能有不同的并行度。

如上图所示,一个数据流在算子之间传输数据的形式可以是一对一(one-to-one)的直通 (forwarding)模式,也可以是打乱的重分区(redistributing,图中的交叉线)模式,具体是哪一种形式,取决于算子的种类。

内容太多了,明天更新

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/136305.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

毅速丨为什么不锈钢材料在金属3D打印中应用广泛

不锈钢材料作为一种常见材料&#xff0c;在金属3D打印中应用广泛&#xff0c;可以说是目前使用率最高的材料&#xff0c;为什么不锈钢大受欢迎&#xff0c;主要由几点原因。 第一、工艺适合性 金属3D打印的工艺&#xff0c;如直接金属激光烧结&#xff08;DMLS&#xff09;或选…

人工智能模型转ONNX 连接摄像头使用ONNX格式的模型进行推理

部署之后模型的运算基本上能快5倍。本地部署之后&#xff0c;联网都不需要&#xff0c;数据和隐私不像在网上那样容易泄露了。 模型部署的通用流程 各大厂商都有自己的推理工具。 训练的归训练&#xff0c;部署的归部署&#xff0c;人工智能也分训练端和部署端&#xff0c;每一…

云端生成式 AI – 基于 Amazon EKS 的 Stable Diffusion 图像生成方案

Stable Diffusion 是当下生成式 AI 领域最受欢迎的开源多模态语言-图像模型&#xff0c;由于其易用的接口和良好的使用体验&#xff0c;受到了开源社区和广大设计行业从业者的追捧。Stable Diffusion 模型版本正在快速迭代&#xff0c;并带动了各行各业的生产力变革。目前市场上…

java制作游戏,如何使用libgdx,入门级别教学

第一步&#xff0c;进入libgdx的官网。点击get started 进入这个页面&#xff0c;点击setup a project 进入这个页面直接点击&#xff0c;Generate a project. 点击下载&#xff0c;下载创建工具 它会让你下载一个jar包&#xff0c;有java环境的人可以双击直接打开。 把android…

C语言面试

数据类型&#xff08;基本内置类型&#xff09; char //字符数据类型 short //短整型 int //整型 long //长整型 long long //更长的整型 float //单精度浮点数 double //双精度浮点数 类型的基本归类 整形家族&#xff1a; …

机器人阻抗与导纳控制的区别

机器人自身的非线性动力学&#xff08;由柔软性引起的&#xff09;导致控制精度下降&#xff0c;因此难以描述准确的动力学。 导纳控制和阻抗控制都是基于位置与力关系的模式&#xff0c;被认为具有鲁棒性和安全性。然而&#xff0c;当机器人与刚体接触时&#xff0c;导纳控制常…

HK WEB3 MONTH Polkadot Hong Kong 火热报名中!

HK Web3 Month 11月除了香港金融科技周外&#xff0c;HK Web3 Month又是一大盛事&#xff0c;从10月29日开始开幕直到11月18日结束。此次将齐聚世界各地的Web3产业从业者、开发者、社群成员和学生来参与本次盛会。除外&#xff0c;超过75位产业知名的讲者与超过50场工作坊将为…

矩阵乘积的迹对矩阵求导

说明 有时候为了输入方便&#xff0c;B和都代表B的转置。 矩阵的在线计算有个网站可以参考&#xff1a;Matrix Calculus dtr(AB)/dAB 下面用一个例子来证明。 dtr(ABA)/dAABAB 下面用一个例子来证明&#xff1a; 因为我们要求ABA的迹&#xff0c;所以为了简便&#xff0c;我们…

osgEarth之添加shp

目录 效果 代码 代码分析 加载模式 效果 代码 #include "stdafx.h" #include <osg/Notify> #include <osgGA/StateSetManipulator> #include <osgViewer/Viewer> #include <osgViewer/ViewerEventHandlers>#include <osgEarth/MapNo…

Elasticsearch内存分析

文章目录 Elasticsearch JVM内存由哪些部分组成Indexing BufferNode Query CacheShard Request CacheField Data CacheSegments Cache查询 非堆内存内存压力mat分析es的jvm缓存监控 Elasticsearch JVM内存由哪些部分组成 官方建议Elasticsearch设置堆内存为32G&#xff0c;因为…

antd-vue + vue3 实现a-table动态增减行,通过a-from实现a-table行内输入验证

一、效果图 图一&#xff1a;校验效果 二、主要代码 注意&#xff1a; 1、form 与 table 绑定的是同一个数据 tableSource 并且是一个数据&#xff08;ElementUI 需要 对象包数组&#xff09; 2、form用的是 name 绑定 -> :name"[index, vlan_id]" 3、form-i…

Java之SpringCloud Alibaba【八】【Spring Cloud微服务Gateway整合sentinel限流】

一、Gateway整合sentinel限流 网关作为内部系统外的一层屏障,对内起到-定的保护作用&#xff0c;限流便是其中之- - .网关层的限流可以简单地针对不同路由进行限流,也可针对业务的接口进行限流,或者根据接口的特征分组限流。 1、添加依赖 <dependency><groupId>c…

Geotrust证书

GeoTrust是著名的证书颁发机构DigiCert的品牌。GeoTrustSSL产品在Internet上提供从基本域名验证到扩展验证SSL标准支持的最高级验证的安全性。 GeoTrust OV&#xff08;组织验证&#xff09;证书验证域所有权和组织的存在。在颁发证书之前&#xff0c;会检查该组织在公共数据库…

CROS错误 403 preflight 预检

预检 403 响应 Response for preflight 403 forbidden 如上图&#xff0c;配置了请求接口一直报错&#xff0c;前端看了没有什么问题&#xff0c;不知道哪里报错了&#xff0c;那么可能是后端没有设置跨域。&#xff08;或者是设置了&#xff0c;但是可能需要换一种方式&#…

Unity 判断两个UI是否相交

今天碰到要判断两个UI是否相交的交互。 尝试了下&#xff0c;发现有两个方法都成功了。 1、使用Collider2D组件 分别创建两个Image组件&#xff0c;并且添加Collider2D组件&#xff0c;其中一个还要添加Rigidbody2D组件&#xff0c;如下图&#xff1a; 然后创建个判断脚本“…

【electron】【附排查清单】记录一次逆向过程中,fetch无法请求http的疑难杂症(net::ERR_BLOCKED_BY_CLIENT)

▒ 目录 ▒ &#x1f6eb; 导读需求开发环境 1️⃣ Adblock等插件拦截2️⃣ 【失败】Content-Security-Policy启动服务器json-serverhtml中的meta字段 3️⃣ 【失败】https vs httpwebPreferences & allowRunningInsecureContent disable-features 4️⃣ 【失败】检测fetch…

基于Skywalking的全链路跟踪实现

在前文“分布式应用全链路跟踪实现”中介绍了分布式应用全链路跟踪的几种实现方法&#xff0c;本文将重点介绍基于Skywalking的全链路实现&#xff0c;包括Skywalking的整体架构和基本概念原理、Skywalking环境部署、SpringBoot和Python集成Skywalking监控实现等。 1、Skywalki…

uni-app学习笔记(二)

目录 一、路由与页面跳转 1、tabar与普通页面跳转例子 2、navigateTo 3、switchTab 二、vue组件 1、传统vue组件的使用 2、easycom 三、uView组件库 1、安装配置 2、引入配置 3、使用 四、Vuex 1、认识 2、state基本使用 3、mapState使用 五、网络请求 1、封装…

网际报文协议ICMP及ICMP重定向实例详解

目录 1、ICMP的概念 2、ICMP重定向 3、利用ICMP重定向进行攻击的原理 4、如何禁止ICMP重定向功能&#xff1f; 4.1、在Linux系统中禁用 4.2、在Windows系统中禁用 5、关于ICMP重定向的问题实例 VC常用功能开发汇总&#xff08;专栏文章列表&#xff0c;欢迎订阅&#xf…

iOS如何通过在线状态来监听其他设备登录的状态

前提条件 1、完成 3.9.1 或以上版本 SDK 初始化 2、了解环信即时通讯 IM API 的 使用限制。 3、已联系商务开通在线状态订阅功能 实现方法 你可以通过调用 subscribe 方法订阅自己的在线状态&#xff0c;从而可以监听到其他设备在登录和离线时的回调&#xff0c;示例代码如下…