人工智能模型转ONNX 连接摄像头使用ONNX格式的模型进行推理

在这里插入图片描述

在这里插入图片描述

部署之后模型的运算基本上能快5倍。本地部署之后,联网都不需要,数据和隐私不像在网上那样容易泄露了。

模型部署的通用流程

在这里插入图片描述
在这里插入图片描述

各大厂商都有自己的推理工具。
训练的归训练,部署的归部署,人工智能也分训练端和部署端,每一个端操心自己事就好了。

ONNX

在这里插入图片描述

1.安装ONNX需要的环境

# 如果Pytorch已经安装,请忽略下一步
# pip3 install torch torchvision --extra-index-url https://download.pytorch.org/whl/cu113# 安装工具
# pip install numpy pandas matplotlib tqdm opencv-python pillow -i https://pypi.tuna.tsinghua.edu.cn/simple# 安装onnx和onnxruntime
# pip install onnx -i https://pypi.tuna.tsinghua.edu.cn/simple
# pip install onnxruntime -i https://pypi.tuna.tsinghua.edu.cn/simpleimport onnx
print('ONNX 版本', onnx.__version__)import onnxruntime as ort
print('ONNX Runtime 版本', ort.__version__)

2.将训练好的模型转换为ONNX格式

import torch
from torchvision import models# 有 GPU 就用 GPU,没有就用 CPU
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print('device', device)# 导入训练好的模型
model = torch.load('../checkpoint/best_0.727.pth')
model = model.eval().to(device)# Pytorch模型转ONNX模型
x = torch.randn(1, 3, 256, 256).to(device)with torch.no_grad():torch.onnx.export(model,                   # 要转换的模型x,                       # 模型的任意一组输入'resnet18_fruit30.onnx', # 导出的 ONNX 文件名opset_version=11,        # ONNX 算子集版本input_names=['input'],   # 输入 Tensor 的名称(自己起名字)output_names=['output']  # 输出 Tensor 的名称(自己起名字)) 

3.验证onnx模型导出成功

import onnx# 读取 ONNX 模型
onnx_model = onnx.load('resnet18_shizi.onnx')# 检查模型格式是否正确
onnx.checker.check_model(onnx_model)print('无报错,onnx模型载入成功')# 以可读的形式打印计算图
print(onnx.helper.printable_graph(onnx_model.graph))

4.连接摄像头使用ONNX Runtime格式的模型进行推理

'''
FPS为 40左右,为什么比没有部署前少了10个fps左右
'''
import osimport cv2
import numpy as np
import pandas as pd
import timefrom tqdm import tqdm # 进度条import torch
import torch.nn.functional as F
from torchvision import transformsimport onnxruntimefrom PIL import Image, ImageFont, ImageDrawimport matplotlib.pyplot as plt# 导入中文字体,指定字体大小
font = ImageFont.truetype('/opt/software/computer_vision/codes/My_codes/obeject_detection/tongjizhihaoxiong/data/SimHei.ttf', 32)# 载入onnx模型
model = onnxruntime.InferenceSession('resnet18_shizi.onnx')# 载入类别名称 和 ID索引号 的映射字典
idx_to_labels = np.load('/opt/software/computer_vision/codes/My_codes/obeject_detection/tongjizhihaoxiong/recognize_shizi/idx_to_labels.npy', allow_pickle=True).item()
# 获得类别名称
classes = list(idx_to_labels.values())# 测试集图像预处理-RCTN:缩放裁剪、转 Tensor、归一化
test_transform = transforms.Compose([transforms.Resize(256),transforms.CenterCrop(256),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225])])# 处理帧函数
def process_frame(img_bgr):# 记录该帧开始处理的时间start_time = time.time()img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)  # BGR转RGBimg_pil = Image.fromarray(img_rgb)  # array 转 PIL## 预处理input_img = test_transform(img_pil)  # 预处理input_tensor = input_img.unsqueeze(0).numpy()## onnx runtime 预测ort_inputs = {'input': input_tensor}  # onnx runtime 输入pred_logits = model.run(['output'], ort_inputs)[0]  # onnx runtime 输出pred_logits = torch.tensor(pred_logits)pred_softmax = F.softmax(pred_logits, dim=1)  # 对 logit 分数做 softmax 运算## 解析图像分类预测结果n = 5top_n = torch.topk(pred_softmax, n)  # 取置信度最大的 n 个结果pred_ids = top_n[1].cpu().detach().numpy().squeeze()  # 解析出类别confs = top_n[0].cpu().detach().numpy().squeeze()  # 解析出置信度## 在图像上写中文draw = ImageDraw.Draw(img_pil)for i in range(len(confs)):pred_class = idx_to_labels[pred_ids[i]]# 写中文:文字坐标,中文字符串,字体,rgba颜色text = '{:<15} {:>.3f}'.format(pred_class, confs[i])  # 中文字符串draw.text((50, 100 + 50 * i), text, font=font, fill=(255, 0, 0, 1))img_rgb = np.array(img_pil)  # PIL 转 arrayimg_bgr = cv2.cvtColor(img_rgb, cv2.COLOR_RGB2BGR)  # RGB转BGR# 记录该帧处理完毕的时间end_time = time.time()# 计算每秒处理图像帧数FPSFPS = 1 / (end_time - start_time)# 图片,添加的文字,左上角坐标,字体,字体大小,颜色,线宽,线型img_bgr = cv2.putText(img_bgr, 'FPS  ' + str(int(FPS)), (50, 80), cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 0, 255), 4,cv2.LINE_AA)return img_bgrdef view_video(video_path):# 设置显示窗口的大小width,height = 800,600video = cv2.VideoCapture(video_path)'''把摄像头设置为1980 x 1080'''video.set(cv2.CAP_PROP_FRAME_WIDTH,1920)video.set(cv2.CAP_PROP_FRAME_HEIGHT,1080)video.set(cv2.CAP_PROP_FOURCC,cv2.VideoWriter.fourcc('M','J','P','G'))if video.isOpened():'''video.read() 一帧一帧地读取open 得到的是一个布尔值,就是 True 或者 Falseframe 得到当前这一帧的图像'''open, frame = video.read()else:open = Falsewhile open:ret, frame = video.read()# 如果读到的帧数不为空,那么就继续读取,如果为空,就退出if frame is None:breakif ret == True:# !!!处理帧函数frame = process_frame(frame)cv2.namedWindow('video',cv2.WINDOW_NORMAL)cv2.imshow("video", frame)# 50毫秒内判断是否受到esc按键的信息if cv2.waitKey(50) & 0xFF == 27:breakvideo.release()cv2.destroyAllWindows()if __name__ == '__main__':# 取前1个参数 和 摄像头的Idcamera_id = 0view_video(camera_id)

TensorRT和ONNX的区别

TensorRT和ONNX是深度学习模型优化和跨平台移植方面两个各有优势的工具。TensorRT是NVIDIA推出的用于深度学习模型优化的高性能库,旨在最大程度地提高深度学习推理的效率和吞吐量。
它可以将训练好的神经网络模型转换为高度优化的代码,以便在GPU上进行实时推理。
TensorRT针对不同类型的层使用了一系列高效的算法和技巧来加速计算,并且可以通过与CUDA和cuDNN等NVIDIA库的集成,以及利用GPU硬件加速来进一步提高性能。ONNX(Open Neural Network Exchange)是由微软、Facebook和亚马逊等科技公司联合开发的跨平台深度学习框架,
它借助中间表示的方式将深度学习框架之间的模型和权重参数相互转换,使得用户可以方便地将自己训练好的模型迁移到其他框架或硬件平台上使用。
相比之下,ONNX主要关注的是模型的跨平台移植性,使得用户可以方便地在不同的硬件平台上部署模型,并且支持多种硬件平台,包括CPU、GPU和FPGA等。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/136302.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

云端生成式 AI – 基于 Amazon EKS 的 Stable Diffusion 图像生成方案

Stable Diffusion 是当下生成式 AI 领域最受欢迎的开源多模态语言-图像模型&#xff0c;由于其易用的接口和良好的使用体验&#xff0c;受到了开源社区和广大设计行业从业者的追捧。Stable Diffusion 模型版本正在快速迭代&#xff0c;并带动了各行各业的生产力变革。目前市场上…

java制作游戏,如何使用libgdx,入门级别教学

第一步&#xff0c;进入libgdx的官网。点击get started 进入这个页面&#xff0c;点击setup a project 进入这个页面直接点击&#xff0c;Generate a project. 点击下载&#xff0c;下载创建工具 它会让你下载一个jar包&#xff0c;有java环境的人可以双击直接打开。 把android…

C语言面试

数据类型&#xff08;基本内置类型&#xff09; char //字符数据类型 short //短整型 int //整型 long //长整型 long long //更长的整型 float //单精度浮点数 double //双精度浮点数 类型的基本归类 整形家族&#xff1a; …

机器人阻抗与导纳控制的区别

机器人自身的非线性动力学&#xff08;由柔软性引起的&#xff09;导致控制精度下降&#xff0c;因此难以描述准确的动力学。 导纳控制和阻抗控制都是基于位置与力关系的模式&#xff0c;被认为具有鲁棒性和安全性。然而&#xff0c;当机器人与刚体接触时&#xff0c;导纳控制常…

HK WEB3 MONTH Polkadot Hong Kong 火热报名中!

HK Web3 Month 11月除了香港金融科技周外&#xff0c;HK Web3 Month又是一大盛事&#xff0c;从10月29日开始开幕直到11月18日结束。此次将齐聚世界各地的Web3产业从业者、开发者、社群成员和学生来参与本次盛会。除外&#xff0c;超过75位产业知名的讲者与超过50场工作坊将为…

矩阵乘积的迹对矩阵求导

说明 有时候为了输入方便&#xff0c;B和都代表B的转置。 矩阵的在线计算有个网站可以参考&#xff1a;Matrix Calculus dtr(AB)/dAB 下面用一个例子来证明。 dtr(ABA)/dAABAB 下面用一个例子来证明&#xff1a; 因为我们要求ABA的迹&#xff0c;所以为了简便&#xff0c;我们…

osgEarth之添加shp

目录 效果 代码 代码分析 加载模式 效果 代码 #include "stdafx.h" #include <osg/Notify> #include <osgGA/StateSetManipulator> #include <osgViewer/Viewer> #include <osgViewer/ViewerEventHandlers>#include <osgEarth/MapNo…

Elasticsearch内存分析

文章目录 Elasticsearch JVM内存由哪些部分组成Indexing BufferNode Query CacheShard Request CacheField Data CacheSegments Cache查询 非堆内存内存压力mat分析es的jvm缓存监控 Elasticsearch JVM内存由哪些部分组成 官方建议Elasticsearch设置堆内存为32G&#xff0c;因为…

antd-vue + vue3 实现a-table动态增减行,通过a-from实现a-table行内输入验证

一、效果图 图一&#xff1a;校验效果 二、主要代码 注意&#xff1a; 1、form 与 table 绑定的是同一个数据 tableSource 并且是一个数据&#xff08;ElementUI 需要 对象包数组&#xff09; 2、form用的是 name 绑定 -> :name"[index, vlan_id]" 3、form-i…

Java之SpringCloud Alibaba【八】【Spring Cloud微服务Gateway整合sentinel限流】

一、Gateway整合sentinel限流 网关作为内部系统外的一层屏障,对内起到-定的保护作用&#xff0c;限流便是其中之- - .网关层的限流可以简单地针对不同路由进行限流,也可针对业务的接口进行限流,或者根据接口的特征分组限流。 1、添加依赖 <dependency><groupId>c…

Geotrust证书

GeoTrust是著名的证书颁发机构DigiCert的品牌。GeoTrustSSL产品在Internet上提供从基本域名验证到扩展验证SSL标准支持的最高级验证的安全性。 GeoTrust OV&#xff08;组织验证&#xff09;证书验证域所有权和组织的存在。在颁发证书之前&#xff0c;会检查该组织在公共数据库…

CROS错误 403 preflight 预检

预检 403 响应 Response for preflight 403 forbidden 如上图&#xff0c;配置了请求接口一直报错&#xff0c;前端看了没有什么问题&#xff0c;不知道哪里报错了&#xff0c;那么可能是后端没有设置跨域。&#xff08;或者是设置了&#xff0c;但是可能需要换一种方式&#…

Unity 判断两个UI是否相交

今天碰到要判断两个UI是否相交的交互。 尝试了下&#xff0c;发现有两个方法都成功了。 1、使用Collider2D组件 分别创建两个Image组件&#xff0c;并且添加Collider2D组件&#xff0c;其中一个还要添加Rigidbody2D组件&#xff0c;如下图&#xff1a; 然后创建个判断脚本“…

【electron】【附排查清单】记录一次逆向过程中,fetch无法请求http的疑难杂症(net::ERR_BLOCKED_BY_CLIENT)

▒ 目录 ▒ &#x1f6eb; 导读需求开发环境 1️⃣ Adblock等插件拦截2️⃣ 【失败】Content-Security-Policy启动服务器json-serverhtml中的meta字段 3️⃣ 【失败】https vs httpwebPreferences & allowRunningInsecureContent disable-features 4️⃣ 【失败】检测fetch…

基于Skywalking的全链路跟踪实现

在前文“分布式应用全链路跟踪实现”中介绍了分布式应用全链路跟踪的几种实现方法&#xff0c;本文将重点介绍基于Skywalking的全链路实现&#xff0c;包括Skywalking的整体架构和基本概念原理、Skywalking环境部署、SpringBoot和Python集成Skywalking监控实现等。 1、Skywalki…

uni-app学习笔记(二)

目录 一、路由与页面跳转 1、tabar与普通页面跳转例子 2、navigateTo 3、switchTab 二、vue组件 1、传统vue组件的使用 2、easycom 三、uView组件库 1、安装配置 2、引入配置 3、使用 四、Vuex 1、认识 2、state基本使用 3、mapState使用 五、网络请求 1、封装…

网际报文协议ICMP及ICMP重定向实例详解

目录 1、ICMP的概念 2、ICMP重定向 3、利用ICMP重定向进行攻击的原理 4、如何禁止ICMP重定向功能&#xff1f; 4.1、在Linux系统中禁用 4.2、在Windows系统中禁用 5、关于ICMP重定向的问题实例 VC常用功能开发汇总&#xff08;专栏文章列表&#xff0c;欢迎订阅&#xf…

iOS如何通过在线状态来监听其他设备登录的状态

前提条件 1、完成 3.9.1 或以上版本 SDK 初始化 2、了解环信即时通讯 IM API 的 使用限制。 3、已联系商务开通在线状态订阅功能 实现方法 你可以通过调用 subscribe 方法订阅自己的在线状态&#xff0c;从而可以监听到其他设备在登录和离线时的回调&#xff0c;示例代码如下…

如何在CentOS上安装SQL Server数据库并通过内网穿透工具实现远程访问

文章目录 前言1. 安装sql server2. 局域网测试连接3. 安装cpolar内网穿透4. 将sqlserver映射到公网5. 公网远程连接6.固定连接公网地址7.使用固定公网地址连接 正文开始前给大家推荐个网站&#xff0c;前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;…

京东商品详情API,页面信息采集,优惠券信息获取

京东开放平台提供了API接口来访问京东商品详情。通过这个接口&#xff0c;您可以获取到商品的详细信息&#xff0c;如商品名称、价格、库存量、描述等。额外还附加一个优惠券信息接口。代码如下: 京东获得JD商品详情 API 优惠券接口 公共参数 名称类型必须描述keyString是调…