yolov8+多算法多目标追踪+实例分割+目标检测+姿态估计(代码+教程)

多目标追踪+实例分割+目标检测

YOLO (You Only Look Once) 是一个流行的目标检测算法,它能够在图像中准确地定位和识别多个物体。
在这里插入图片描述

本项目是基于 YOLO 算法的目标跟踪系统,它将 YOLO 的目标检测功能与目标跟踪技术相结合,实现了实时的多目标跟踪。

在 目标追踪+语义分割+目标检测项目中,主要做了以下工作

  • 目标检测:利用 YOLO 算法进行目标检测,识别图像或视频中的各种物体,并确定它们的位置和类别。

  • 目标跟踪j:通过使用跟踪算法(如卡尔曼滤波器、光流法等),对检测到的目标进行跟踪,以实现目标在视频序列中的持续跟踪。

  • 实例分割:对目标检测后的目标进行mask,做到实例分割

跟踪算法大集合

  • deepsort:

    深度学习框架下的追踪算法,可以有效地处理遮挡、尺度变化和外观变化等问题。 通过深度特征提取和匹配,能够在复杂场景下实现高准确度的目标追踪。

  • strongsort:

    具有较强的鲁棒性和稳定性,对于复杂背景和光照变化的环境有较好的适应能力。 在处理大量目标时,能够保持较高的追踪质量。

  • ocsort:

    基于外观特征的追踪算法,对目标外观的描述准确度较高,适用于需要精确目标识别的场景。
    在多目标追踪时,能够有效地区分不同目标并保持稳定的追踪状态。

  • bytetrack:

    采用了高效的特征提取和匹配策略,具有较快的处理速度和较低的计算成本。
    在资源受限的环境下,能够提供良好的追踪性能,适用于嵌入式和移动设备等场景。

  • botsort:

    具有较好的可扩展性和灵活性,可以根据具体需求进行定制和优化。
    在复杂多变的追踪场景中,能够通过参数调整和模型配置进行有效适配,提供高度定制化的追踪解决方案。

在这里插入图片描述

优越性

  • 实时性能优化:针对目标跟踪系统的实时性能进行优化,使其能够在实时视频流中高效地进行目标检测和跟踪。

姿态估计

  • 人体关键点检测:通过图像或视频数据,识别并定位出人体的关键点,例如头部、肩膀、手肘、手腕、膝盖、脚踝等关键部位的位置。通常使用的是基于深度学习的关键点检测算法

  • 多目标处理:实现了多目标跟踪功能,能够同时跟踪并管理多个目标,并在复杂场景下保持良好的跟踪性能。

    在这里插入图片描述

  • 应用场景:将 Y项目应用于实际场景,如智能监控、自动驾驶、无人机跟踪等领域,验证其在实际应用中的效果和可靠性。
    在这里插入图片描述

代码部署

  1. requirements,txt列表(优选Linux环境),成功运行的包,兼容性能良好。
  2. 并且将yolov8.pt 和yolov8_seg.pt。放在根目录下。
  3. 或者直接运行脚本,也会在线下载权重文件!
_libgcc_mutex=0.1=main
_openmp_mutex=5.1=1_gnu
absl-py=2.0.0=pypi_0
beautifulsoup4=4.12.2=pypi_0
boxmot=10.0.43=dev_0
ca-certificates=2023.08.22=h06a4308_0
cachetools=5.3.2=pypi_0
certifi=2023.7.22=pypi_0
cfgv=3.4.0=pypi_0
charset-normalizer=3.3.2=pypi_0
contourpy=1.1.1=pypi_0
cycler=0.12.1=pypi_0
cython=3.0.5=pypi_0
dataclasses=0.6=pypi_0
distlib=0.3.7=pypi_0
filelock=3.13.1=pypi_0
filterpy=1.4.5=pypi_0
fonttools=4.43.1=pypi_0
ftfy=6.1.1=pypi_0
future=0.18.3=pypi_0
gdown=4.7.1=pypi_0
gitdb=4.0.11=pypi_0
gitpython=3.1.40=pypi_0
google-auth=2.23.4=pypi_0
google-auth-oauthlib=1.0.0=pypi_0
grpcio=1.59.2=pypi_0
identify=2.5.31=pypi_0
idna=3.4=pypi_0
importlib-metadata=6.8.0=pypi_0
importlib-resources=6.1.0=pypi_0
joblib=1.3.2=pypi_0
kiwisolver=1.4.5=pypi_0
lapx=0.5.5=pypi_0
ld_impl_linux-64=2.38=h1181459_1
libffi=3.4.4=h6a678d5_0
libgcc-ng=11.2.0=h1234567_1
libgomp=11.2.0=h1234567_1
libstdcxx-ng=11.2.0=h1234567_1
loguru=0.7.2=pypi_0
markdown=3.5.1=pypi_0
markupsafe=2.1.3=pypi_0
matplotlib=3.7.3=pypi_0
ncurses=6.4=h6a678d5_0
nodeenv=1.8.0=pypi_0
numpy=1.24.4=pypi_0
oauthlib=3.2.2=pypi_0
opencv-python=4.8.1.78=pypi_0
openssl=3.0.11=h7f8727e_2
packaging=23.2=pypi_0
pandas=2.0.3=pypi_0
pillow=10.1.0=pypi_0
pip=23.3=py38h06a4308_0
platformdirs=3.11.0=pypi_0
pre-commit=3.5.0=pypi_0
protobuf=4.25.0=pypi_0
psutil=5.9.6=pypi_0
py-cpuinfo=9.0.0=pypi_0
pyasn1=0.5.0=pypi_0
pyasn1-modules=0.3.0=pypi_0
pyparsing=3.1.1=pypi_0
pysocks=1.7.1=pypi_0
python=3.8.18=h955ad1f_0
python-dateutil=2.8.2=pypi_0
pytz=2023.3.post1=pypi_0
pyyaml=6.0.1=pypi_0
readline=8.2=h5eee18b_0
regex=2023.10.3=pypi_0
requests=2.31.0=pypi_0
requests-oauthlib=1.3.1=pypi_0
rsa=4.9=pypi_0
scikit-learn=1.3.2=pypi_0
scipy=1.10.1=pypi_0
seaborn=0.13.0=pypi_0
setuptools=68.0.0=py38h06a4308_0
six=1.16.0=pypi_0
smmap=5.0.1=pypi_0
soupsieve=2.5=pypi_0
sqlite=3.41.2=h5eee18b_0
tabulate=0.9.0=pypi_0
tensorboard=2.14.0=pypi_0
tensorboard-data-server=0.7.2=pypi_0
thop=0.1.1-2209072238=pypi_0
threadpoolctl=3.2.0=pypi_0
tk=8.6.12=h1ccaba5_0
torch=1.7.0=pypi_0
torchvision=0.8.1=pypi_0
tqdm=4.66.1=pypi_0
typing-extensions=4.8.0=pypi_0
tzdata=2023.3=pypi_0
ultralytics=8.0.146=pypi_0
urllib3=2.0.7=pypi_0
virtualenv=20.24.6=pypi_0
wcwidth=0.2.9=pypi_0
werkzeug=3.0.1=pypi_0
wheel=0.41.2=py38h06a4308_0
xz=5.4.2=h5eee18b_0
yacs=0.1.8=pypi_0
yolox=0.3.0=pypi_0
zipp=3.17.0=pypi_0
zlib=1.2.13=h5eee18b_0

你只需要输入以下指令:即可配置好环境!!!

 conda create --name yolo_track  --file requiremnts.txt

目标检测运行

运行脚本:

$ python examples/track.py --yolo-model yolov8n       # bboxes onlypython examples/track.py --yolo-model yolo_nas_s    # bboxes onlypython examples/track.py --yolo-model yolox_n       # bboxes onlyyolov8n-seg   # bboxes + segmentation masksyolov8n-pose  # bboxes + pose estimation

目标跟踪

目标跟踪 脚本:

$ python examples/track.py --tracking-method deepocsortstrongsortocsortbytetrackbotsort

ReID 模型

在追踪过程中,一些跟踪方法结合外观描述和运动信息。对于那些使用外观描述的方法,你可以根据自己的需求从 ReID 模型库中选择一个 ReID 模型。这些模型可以通过 reid_export.py 脚本进一步优化以满足你的需求。

$ python examples/track.py --source 0 --reid-model lmbn_n_cuhk03_d.pt               # lightweightosnet_x0_25_market1501.ptmobilenetv2_x1_4_msmt17.engineresnet50_msmt17.onnxosnet_x1_0_msmt17.ptclip_market1501.pt               # heavyclip_vehicleid.pt...

结果展示

下文展示了具体的视频实现效果!

qq1309399183

视频展示链接

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/134731.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【并发编程-3】线程池

对于多线程来说,new Thread一定是创建了线程,而Runnable只是一个任务,并没有创建新的线程。 所以,Runnable任务要交给线程来执行。 如果对于每个任务都创建一个线程来执行,显然是不合理的。 线程池就是为了复用线程来…

京东按关键词搜索商品列表接口:竞品分析,商品管理,营销策略制定

京东搜索商品列表接口是京东开放平台提供的一种API接口,通过调用该接口,开发者可以获取京东平台上商品的列表数据,包括商品的标题、价格、库存、月销量、总销量、详情描述、图片等信息。 接口的主要作用包括: 市场调研&#xff…

OSPF下的MGRE实验

一、实验要求 1、R1-R3-R4构建全连的MGRE环境 2、R1-R5-R6建立hub-spoke的MGRE环境,其中R1为中心 3、R1-R3...R6均存在环回网段模拟用户私网,使用OSPF使全网可达 4、其中R2为ISP路由器,仅配置IP地址 二、实验拓扑图 三、实验配置 1、给各路…

iPortal如何灵活设置用户名及密码的安全规则

作者&#xff1a;yx 目录 前言 一、配置文件介绍 1、<passwordRules>节点 注意事项&#xff1a; 2、<usernameRules>节点 二、应用实例 1、配置文件设置 2、验证扩展结果 三、结果展示 前言 SuperMap iPortal提供了扩展账户信息合规度校验规则的能力&#…

一名优秀的C++人员是怎么炼成的?

一名优秀的C人员是怎么炼成的? 优秀的程序员都是解决各种bug锻炼出来的&#xff0c;程序员每天的工作大部分时间都是在解决各种bug, 所以说多做项目才是提升能力的唯一途径&#xff0c;要不然就是花架子&#xff0c;各种技术名词、源码整的很溜&#xff0c;一如果不是喜欢 C …

WPF中依赖属性及附加属性的概念及用法

完全来源于十月的寒流&#xff0c;感谢大佬讲解 依赖属性 由依赖属性提供的属性功能 与字段支持的属性不同&#xff0c;依赖属性扩展了属性的功能。 通常&#xff0c;添加的功能表示或支持以下功能之一&#xff1a; 资源数据绑定样式动画元数据重写属性值继承WPF 设计器集成 …

阴虱是怎么长出来的?皮肤性病科主任谭巍讲述五大因素

阴虱&#xff0c;是一种皮肤接触性传染性寄生虫病&#xff0c;在卫生情况不好的前提下有感染阴虱的可能性。人在感染阴虱后会对身心健康带来负面影响&#xff0c;所产生的临床症状会直接影响感染者的工作生活&#xff0c;所以日常应注意预防阴虱病。 然而&#xff0c;到现在还…

AI时代项目经理与架构师的成长之道:ChatGPT让你插上翅膀

&#x1f482; 个人网站:【工具大全】【游戏大全】【神级源码资源网】&#x1f91f; 前端学习课程&#xff1a;&#x1f449;【28个案例趣学前端】【400个JS面试题】&#x1f485; 寻找学习交流、摸鱼划水的小伙伴&#xff0c;请点击【摸鱼学习交流群】 在AI时代&#xff0c;项…

Vue3.0 声明式导航,编程式导航,路由,路由拦截案例

项目结构 App.vue&#xff1a;根组件 <template><div><router-view></router-view><Tabbar></Tabbar></div> </template> <script setup> import Tabbar from ../src/views/Tabbar.vue; //底部选项卡 import Home from…

Android T窗口动画添加移除流程(更新中)

APP侧窗口动画demo 如何创建一个窗口动画&#xff1f;我们通过先从APP创建一个窗口&#xff0c;以这个窗口的创建过程的窗口动画为例 这个demo就是点击BUTTON显示窗口&#xff0c;点击CLOSE WINDOW关闭窗口&#xff0c;下面简述关键代码 //定义WindowManager和LayoutParams…

Go:如何在GoLand中引用github.com中的第三方包

本篇博客主要介绍如何在GoLand中引入github.com中的第三方包。具体步骤如下&#xff1a; 正文 (1) 先在GoLand中打开go的工作区目录(即环境变量$GOPATH设置的变量)。如图&#xff1a; 关于工作区目录中的三个子目录: bin: 保存已编译的二进制可执行程序&#xff1b;pkg: 保…

深度学习之基于Tensorflow卷积神经网络花卉识别系统

欢迎大家点赞、收藏、关注、评论啦 &#xff0c;由于篇幅有限&#xff0c;只展示了部分核心代码。 文章目录 一项目简介 二、功能三、系统四. 总结 一项目简介 深度学习是一种机器学习方法&#xff0c;它通过模拟人脑神经网络的结构和功能来实现对数据的自动分析和学习。卷积神…

SpringCloud——服务网关——GateWay

1.GateWay是什么&#xff1f; gateway也叫服务网关&#xff0c;SpringCloud GateWay使用的是Webflux中的reactor-netty响应式编程组件&#xff0c;底层使用了Netty通讯框架。 gateway的功能有反向代理、鉴权、流量控制、熔断、日志监控...... 2.为什么不使用Zuul&#xff1f…

EasyExcel 导出冻结指定行

导出的实体类 package org.jeecg.modules.eis.test;import com.alibaba.excel.annotation.ExcelProperty; import com.alibaba.excel.annotation.write.style.*; import lombok.Getter; import lombok.Setter; import org.apache.poi.ss.usermodel.HorizontalAlignment;import…

Android Studio代码无法自动补全

Android Studio代码自动无法补全问题解决 在写layout布局文件时&#xff0c;代码不提示&#xff0c;不自动补全&#xff0c;可以采用如下方法&#xff1a; 点击File—>Project Structure&#xff0c;之后如图所示&#xff0c;找到左侧Modules&#xff0c;修改SDK版本号&…

Android笔记:(最全)判断网线是否插入方法

1.通过调用命令: cat /sys/class/net/eth0/carrier1.1在java代码中执行adb命令: private fun execCommand(command: String?): String {val runtime

【算法秘籍】藏在0和1之间的秘密,助你码出优秀人生

《算法秘籍》双十一 5折购书&#xff0c;就在京东商城 数据结构和算法是计算机科学的基石&#xff0c;是计算机的灵魂&#xff0c;要想成为计算机专业人员&#xff0c;学习和掌握算法是十分必要的。不懂数据结构和算法的人不可能写出效率更高的代码。计算机科学的很多新行业都离…

python加上ffmpeg实现音频分割

前言: 这是一个系列的文章,主要是使用python加上ffmpeg来对音视频文件进行处理,包括音频播放、音频格式转换、音频文件分割、视频播放等。 系列文章链接: 链接1: python使用ffmpeg来制作音频格式转换工具(优化版) 链接2:<Python>PyQt5+ffmpeg,简单视频播放器的编写(…

虚拟环境中使用的Python不是当前虚拟环境的,解决方法

every blog every motto: You can do more than you think. https://blog.csdn.net/weixin_39190382?typeblog 0. 前言 在虚拟环境中使用的python和pip不是虚拟环境的pip安装不到当前的虚拟环境中…等 解决方法 1. 解决办法 打开配置文件 vim ~/.bashrc把如下代码注释即…

如何进行单病种质控上报管理

过程质量管理发展历程 单病种质量管理兴起之初&#xff0c;医疗机构多强调致残率、致死率、平均住院日、治愈好转率等结果性指标。这些指标主观性强&#xff0c;且为事后管理&#xff0c;无法及时发现问题&#xff0c;具有滞后性。 《卫生部办公厅关于开展单病种质量管理控制…