Flink SQL时间属性和窗口介绍

(1)概述

时间属性(time attributes),其实就是每个表模式结构(schema)的一部分。它可以在创建表的 DDL 里直接定义为一个字段,也可以在 DataStream 转换成表时定义。

一旦定义了时间属性,它就可以作为一个普通字段引用,并且可以在基于时间的操作中使用。

时间属性的数据类型为 TIMESTAMP,它的行为类似于常规时间戳,可以直接访问并且进行计算。

按照时间语义的不同,可以把时间属性的定义分成事件时间(event time)和处理时间(processing time)两种情况。

(2)事件时间

1)在创建表的 DDL 中定义

在创建表的 DDL(CREATE TABLE 语句)中,可以增加一个字段,通过 WATERMARK语句来定义事件时间属性。

WATERMARK 语句主要用来定义水位线(watermark)的生成表达式,这个表达式会将带有事件时间戳的字段标记为事件时间属性,并在它基础上给出水位线的延迟时间。

具体定义方式如下:

CREATE TABLE EventTable(user STRING,url STRING,ts TIMESTAMP(3),WATERMARK FOR ts AS ts - INTERVAL '5' SECOND
) WITH (...
);

把 ts 字段定义为事件时间属性,而且基于 ts 设置了 5 秒的水位线延迟。这里的“5 秒”是以“时间间隔”的形式定义的,格式是 INTERVAL <数值> <时间单位>:INTERVAL '5’ SECOND,这里的数值必须用单引号引起来,而单位用 SECOND 和 SECONDS 是等效的。

Flink 中支持的事件时间属性数据类型必须为 TIMESTAMP 或者 TIMESTAMP_LTZ。这里TIMESTAMP_LTZ 是指带有本地时区信息的时间戳(TIMESTAMP WITH LOCAL TIME ZONE);

如数据中的时间戳是“年-月-日-时-分-秒”形式,那就是不带时区信息的,可以将事件时间属性定义为 TIMESTAMP 类型。
而如果原始的时间戳就是一个长整型的毫秒数,这时就需要另外定义一个字段来表示事件时间属性,类型定义为 TIMESTAMP_LTZ 会更方便:

CREATE TABLE events (user STRING,url STRING,ts BIGINT,ts_ltz AS TO_TIMESTAMP_LTZ(ts, 3),WATERMARK FOR ts_ltz AS ts_ltz - INTERVAL '5' SECOND
) WITH (...
);

这里我们另外定义了一个字段 ts_ltz,是把长整型的 ts 转换为 TIMESTAMP_LTZ 得到的;进而使用 WATERMARK 语句将它设为事件时间属性,并设置 5 秒的水位线延迟。

2)在数据流转换为表时定义

调用 fromDataStream()方法创建表时,可以追加参数来定义表中的字段结构;这时可以给某个字段加上.rowtime() 后缀,就表示将当前字段指定为事件时间属性。

这个字段可以是数据中本不存在、额外追加上去的“逻辑字段”,就像之前 DDL 中定义的第二种情况;也可以是本身固有的字段,那么这个字段就会被事件时间属性所覆盖,类型也会被转换为 TIMESTAMP。

不论哪种方式,时间属性字段中保存的都是事件的时间戳(TIMESTAMP 类型)。

需要注意的是,这种方式只负责指定时间属性,而时间戳的提取和水位线的生成应该之前就在 DataStream 上定义好了。

由于 DataStream 中没有时区概念,因此 Flink 会将事件时间属性解析成不带时区的 TIMESTAMP 类型,所有的时间值都被当作 UTC 标准时间。

在代码中的定义方式如下:

// 方法一:
// 流中数据类型为二元组 Tuple2,包含两个字段;需要自定义提取时间戳并生成水位线
DataStream<Tuple2<String, String>> stream = inputStream.assignTimestampsAndWatermarks(...);// 声明一个额外的逻辑字段作为事件时间属性
Table table = tEnv.fromDataStream(stream, $("user"), $("url"),$("ts").rowtime());// 方法二:
// 流中数据类型为三元组 Tuple3,最后一个字段就是事件时间戳
DataStream<Tuple3<String, String, Long>> stream = inputStream.assignTimestampsAndWatermarks(...);// 不再声明额外字段,直接用最后一个字段作为事件时间属性
Table table = tEnv.fromDataStream(stream, $("user"), $("url"),$("ts").rowtime());

(3)处理时间

系统时间,使用时不需要提取时间戳(timestamp)和生成水位线(watermark)。因此在定义处理时间属性时,必须要额外声明一个字段,专门用来保存当前的处理时间。

类似地,处理时间属性的定义也有两种方式:创建表 DDL 中定义,或者在数据流转换成表时定义。

1)在创建表的 DDL 中定义

在创建表的 DDL(CREATE TABLE 语句)中,可以增加一个额外的字段,通过调用系统内置的 PROCTIME()函数来指定当前的处理时间属性,返回的类型是 TIMESTAMP_LTZ。

CREATE TABLE EventTable(user STRING,url STRING,ts AS PROCTIME()
) WITH (...
);

时间属性,以“计算列”(computed column)的形式定义出来的。所谓的计算列是 Flink SQL 中引入的特殊概念,可以用一个 AS 语句来在表中产生数据中不存在的列,并且可以利用原有的列、各种运算符及内置函数。

在前面事件时间属性的定义中,将 ts 字段转换成 TIMESTAMP_LTZ 类型的 ts_ltz,也是计算列的定义方式。

2)在数据流转换为表时定义

处理时间属性同样可以在将 DataStream 转换为表的时候来定义。我们调用 fromDataStream()方法创建表时,可以用.proctime()后缀来指定处理时间属性字段。

由于处理时间是系统时间,原始数据中并没有这个字段,所以处理时间属性一定不能定义在一个已有字段上,只能定义在表结构所有字段的最后,作为额外的逻辑字段出现。

代码中定义处理时间属性的方法如下:

DataStream<Tuple2<String, String>> stream = ...;// 声明一个额外的字段作为处理时间属性字段
Table table = tEnv.fromDataStream(stream, $("user"), $("url"),$("ts").proctime());

(4)窗口(Window)

1)分组窗口(Group Window,老版本)

在 Flink 1.12 之前的版本中,Table API 和 SQL 提供了一组“分组窗口”(Group Window)函数,常用的时间窗口如滚动窗口、滑动窗口、会话窗口都有对应的实现;具体在 SQL 中就是调用 TUMBLE()、HOP()、SESSION(),传入时间属性字段、窗口大小等参数就可以了。

以滚动窗口为例:

TUMBLE(ts, INTERVAL '1' HOUR)

这里的 ts 是定义好的时间属性字段,窗口大小用“时间间隔”INTERVAL 来定义。在进行窗口计算时,分组窗口是将窗口本身当作一个字段对数据进行分组的,可以对组内的数据进行聚合。

基本使用方式如下:

Table result = tableEnv.sqlQuery("SELECT " +"user, " +
"TUMBLE_END(ts, INTERVAL '1' HOUR) as endT, " +"COUNT(url) AS cnt " +"FROM EventTable " +"GROUP BY " + // 使用窗口和用户名进行分组"user, " +"TUMBLE(ts, INTERVAL '1' HOUR)" // 定义 1 小时滚动窗口);

这里定义了 1 小时的滚动窗口,将窗口和用户 user 一起作为分组的字段。用聚合函数COUNT()对分组数据的个数进行了聚合统计,并将结果字段重命名为cnt;用TUPMBLE_END() 函数获取滚动窗口的结束时间,重命名为 endT 提取出来。

分组窗口的功能比较有限,只支持窗口聚合,所以目前已经处于弃用(deprecated)的状态。

2)窗口表值函数(Windowing TVFs,新版本)

从 1.13 版本开始,Flink 开始使用窗口表值函数(Windowing table-valued functions,Windowing TVFs)来定义窗口。

窗口表值函数是 Flink 定义的多态表函数(PTF),可以将表进行扩展后返回。表函数(table function)可以看作是返回一个表的函数。

目前 Flink 提供了以下几个窗口 TVF:
1.滚动窗口(Tumbling Windows);
2.滑动窗口(Hop Windows,跳跃窗口);
3.累积窗口(Cumulate Windows);
4.会话窗口(Session Windows,目前尚未完全支持)。

1.概述

窗口表值函数可以完全替代传统的分组窗口函数。窗口 TVF 更符合 SQL 标准,性能得到了优化,拥有更强大的功能;可以支持基于窗口的复杂计算,例如窗口 Top-N、窗口联结(window join)等等。

在窗口 TVF 的返回值中,除去原始表中的所有列,还增加了用来描述窗口的额外 3 个列:“窗口起始点(window_start)、“窗口结束点”(window_end)、“窗口时间”(window_time)。

起始点和结束点比较好理解,这里的“窗口时间”指的是窗口中的时间属性,它的值等于 window_end - 1ms,所以相当于是窗口中能够包含数据的最大时间戳。

在 SQL 中的声明方式,与以前的分组窗口是类似的,直接调用 TUMBLE()、HOP()、CUMULATE()就可以实现滚动、滑动和累积窗口,不过传入的参数会有所不同。

2.滚动窗口(TUMBLE)

滚动窗口在 SQL 中的概念与 DataStream API 中的定义完全一样,是长度固定、时间对齐、无重叠的窗口,一般用于周期性的统计计算。

在 SQL 中通过调用 TUMBLE()函数就可以声明一个滚动窗口,只有一个核心参数就是窗口大小(size)。

在 SQL 中不考虑计数窗口,所以滚动窗口就是滚动时间窗口,参数中还需要将当前的时间属性字段传入;另外,窗口 TVF 本质上是表函数,可以对表进行扩展,所以还应该把当前查询的表作为参数整体传入。具体声明如下:

TUMBLE(TABLE EventTable, DESCRIPTOR(ts), INTERVAL '1' HOUR)

这里基于时间字段 ts,对表 EventTable 中的数据开了大小为 1 小时的滚动窗口。窗口会将表中的每一行数据,按照它们 ts 的值分配到一个指定的窗口中。

(2)滑动窗口(HOP)

滑动窗口的使用与滚动窗口类似,可以通过设置滑动步长来控制统计输出的频率。在 SQL中通过调用 HOP()来声明滑动窗口;除了也要传入表名、时间属性外,还需要传入窗口大小(size)和滑动步长(slide)两个参数。

HOP(TABLE EventTable, DESCRIPTOR(ts), INTERVAL '5' MINUTES, INTERVAL '1' HOURS));

这里我们基于时间属性 ts,在表 EventTable 上创建了大小为 1 小时的滑动窗口,每 5 分钟滑动一次。需要注意的是,紧跟在时间属性字段后面的第三个参数是步长(slide),第四个参数才是窗口大小(size)。

(3)累积窗口(CUMULATE)

滚动窗口和滑动窗口,可以用来计算大多数周期性的统计指标。

在实际应用中还会遇到这样一类需求:我们的统计周期可能较长,因此希望中间每隔一段时间就输出一次当前的统计值;

与滑动窗口不同的是,在一个统计周期内,我们会多次输出统计值,它们应该是不断叠加累积的。

例如,我们按天来统计网站的 PV(Page View,页面浏览量),如果用 1 天的滚动窗口,那需要到每天 24 点才会计算一次,输出频率太低;如果用滑动窗口,计算频率可以更高,但统计的就变成了“过去 24 小时的 PV”。

所以我们真正希望的是,还是按照自然日统计每天的PV,不过需要每隔 1 小时就输出一次当天到目前为止的 PV 值。这种特殊的窗口就叫作“累积窗口”(Cumulate Window)。

在这里插入图片描述

累积窗口是窗口 TVF 中新增的窗口功能,它会在一定的统计周期内进行累积计算。

累积窗口中有两个核心的参数:最大窗口长度(max window size)和累积步长(step)。

所谓的最大窗口长度其实就是我们所说的“统计周期”,最终目的就是统计这段时间内的数据。开始时,创建的第一个窗口大小就是步长 step;之后的每个窗口都会在之前的基础上再扩展 step 的长度,直到达到最大窗口长度。

在 SQL 中可以用 CUMULATE()函数来定义,具体如下:

CUMULATE(TABLE EventTable, DESCRIPTOR(ts), INTERVAL '1' HOURS, INTERVAL '1' DAYS))

这里我们基于时间属性 ts,在表 EventTable 上定义了一个统计周期为 1 天、累积步长为 1小时的累积窗口。注意第三个参数为步长 step,第四个参数则是最大窗口长度。

上面所有的语句只是定义了窗口,类似于 DataStream API 中的窗口分配器;在 SQL 中窗口的完整调用,还需要配合聚合操作和其它操作。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/133156.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

06_es分布式搜索引擎2

一、DSL查询文档 1.DSL查询分类 ①查询所有&#xff1a;match_all ②全文检索&#xff1a;利用分词器对用户输入的内容分词&#xff0c;倒排索引去匹配 match_query multi_match_query ③精确查询&#xff1a;根据精确词条查找数据&#xff0c;查找的是keyword,数值,日期,b…

大数据毕业设计选题推荐-智慧小区大数据平台-Hadoop-Spark-Hive

✨作者主页&#xff1a;IT研究室✨ 个人简介&#xff1a;曾从事计算机专业培训教学&#xff0c;擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。 ☑文末获取源码☑ 精彩专栏推荐⬇⬇⬇ Java项目 Python…

【C++】构造函数和析构函数第三部分(各种构造函数调用规则、多个对象的构造和析构、初始化列表)--- 2023.11.6

目录 各种构造函数的调用规则对象以值的方式给函数参数用一个已有的对象去初始化另一个对象函数的局部对象以值的方式从函数返回调用规则1调用规则2 多个对象的构造和析构初始化列表结束语 各种构造函数的调用规则 对象以值的方式给函数参数 实例&#xff1a; class Maker {…

Linux上编译sqlite3库出现undefined reference to `sqlite3_column_table_name‘

作者&#xff1a;朱金灿 来源&#xff1a;clever101的专栏 为什么大多数人学不会人工智能编程&#xff1f;>>> 在Ubuntu 18上编译sqlite3库后在运行程序时出现undefined reference to sqlite3_column_table_name’的错误。网上的说法是说缺少SQLITE_ENABLE_COLUMN_M…

libevent

libevent 库概念和特点 开源。精简。跨平台&#xff08;Windows、Linux、maxos、unix&#xff09;。专注于网络通信&#xff08;不一定非用在网络当中&#xff0c;比如下面的读写管道&#xff09;。 libevent特性&#xff1a;基于"事件"&#xff0c;面向“文件描述符…

软件开发项目文档系列之十如何撰写测试用例

目录 1 概述1.1 编写目的1.2 定义1.3 使用范围1.4 参考资料1.5 术语定义 2 测试用例2.1 功能测试2.1.1 用户登录功能2.1.2 商品搜索功能 2.2 性能测试2.2.1 网站响应时间2.2.2 并发用户测试 附件&#xff1a; 测试用例撰写的要素和注意事项附件1 测试用例要素附件2 测试用例的注…

【鸿蒙软件开发】ArkUI容器组件之Grid(网格布局)

文章目录 前言一、Grid1.1 子组件GridItem是什么子组件接口属性事件示例代码 1.2 接口参数 1.3 属性1.4 Grid的几种布局模式1.5 GridDirection枚举说明1.6事件ItemDragInfo对象说明 1.7 示例代码 总结 前言 Grid容器组件&#xff1a;网格容器&#xff0c;由“行”和“列”分割…

【数据结构初级(2)】单链表的基本操作和实现

文章目录 Ⅰ 概念及结构1. 单链表的概念2. 单链表的结构 Ⅱ 基本操作实现1. 定义单链表结点2. 创建新结点3. 单链表打印4. 单链表尾插5. 单链表头插6. 单链表尾删7. 单链表头删8. 单链表查找9. 在指定 pos 位置前插入结点10. 删除指定 pos 位置的结点11. 单链表销毁 本章实现的…

P02项目(学习)

★ P02项目 项目描述&#xff1a;安全操作项目旨在提高医疗设备的安全性&#xff0c;特别是在医生离开操作屏幕时&#xff0c;以减少非授权人员的误操作风险。为实现这一目标&#xff0c;我们采用多层次的保护措施&#xff0c;包括人脸识别、姿势检测以及二维码识别等技术。这些…

数据结构-邻接表广度优先搜索(C语言版)

对于一个有向图无向图&#xff0c;我们下面介绍第二种遍历方式。 广度优先搜索&#xff0c;即优先对同一层的顶点进行遍历。 如下图所示&#xff1a; 该例子&#xff0c;我们有六个顶点&#xff0c; 十条边。 对于广度优先搜索&#xff0c;我们先搜索a&#xff0c;再搜索abc…

5、Python中的变量和表达式:变量的定义、赋值和数据类型转换

文章目录 Python中的变量和表达式:变量的定义、赋值和数据类型转换变量的定义变量的赋值数据类型转换注意事项表达式总结Python中的变量和表达式:变量的定义、赋值和数据类型转换 Python是一种高级编程语言,以其简洁明了的语法和强大的功能而闻名。在Python编程中,变量和表…

力扣第121题 买卖股票的最佳时机 c++ 动态规划解法 熟练dp思维 之简单题 附Java代码

题目 &#xff08;在我以前有贪心解法&#xff0c;也可以去参考参考&#xff09; 贪心解法 股票问题https://blog.csdn.net/jgk666666/article/details/133978629 121. 买卖股票的最佳时机 简单 相关标签 数组 动态规划 给定一个数组 prices &#xff0c;它的第 i 个元…

NVMe FDP会被广泛使用吗?

文章开头&#xff0c;我们需要先了解固态硬盘的读写机制。我们知道&#xff0c;固态硬盘的存储单元是由闪存颗粒组成的&#xff0c;无法实现物理性的数据覆盖&#xff0c;只能擦除然后写入&#xff0c;重复这一过程。因而&#xff0c;我们可以想象得到&#xff0c;在实际读写过…

Mac VsCode g++编译报错:不支持C++11语法解决

编译运行时报错&#xff1a; [Running] cd “/Users/yiran/Documents/vs_projects/c/” && g 1116.cpp -o 1116 && "/Users/yiran/Documents/vs_projects/c/"1116 1116.cpp:28:22: warning: range-based for loop is a C11 extension [-Wc11-extensi…

Maven3.9.1安装及环境变量配置

一、Maven的下载与安装 maven各版本下载地址 打开链接后自行选择对应版本 下载完成后解压安装,最好别选择c盘,安装目录路径等使用英文,避免产生其他问题 我这里选择的是D盘 二、Maven的环境变量配置 2.1、右键点击此电脑选择属性&#xff0c;点击高级系统设置&#xff0c;点…

jenkins结合k8s部署动态slave

1、完成k8s连接 在完成jenkins的部署后现安装kubernets的插件 如果jenkins 是部署在k8s集群中只需要填写一下 如果是非本集群的部署则需要填写证书等 cat ./config echo ‘certificate-authority-data-value’ | base64 -d > ./ca.crt echo ‘client-certificate-data’ |…

结合组件库实现table组件树状数据的增删改

如图所示&#xff0c;可以实现树状数据的新增子项&#xff0c;新增平级&#xff0c;删除。主要用到了递归 代码&#xff1a; <template><el-table :data"tableData" style"width: 100%; margin-bottom: 20px" row-key"id" border def…

uniapp使用技巧及例子

前言 uniapp&#xff08;Universal Application&#xff09;是一种基于Vue.js的全端解决方案&#xff0c;允许开发者使用一套代码构建多个平台的应用程序。这些平台包括iOS、Android、H5、微信小程序、支付宝小程序等。uniapp的出现解决了跨平台开发的痛点&#xff0c;大大减少…

ce从初阶到大牛--动态网络部署

1.基于域名www.openlab.com可以访问网站内容为 welcome to openlab!!! systemctl stop firewalld setenforce 0 cd /etc/httpd/conf.d/ vim openlab.conf ** <VirtualHost 192.168.170.100:80>DocumentRoot /www/openlabServerName 192.168.170.100 </VirtualHost>…

排序算法之-选择

算法原理 在未排序的数列中找出最大&#xff08;或最小&#xff09;的元素&#xff0c;然后将其存入到已排序的数列起始位置&#xff0c;紧接着在剩余的未排序数列中继续查找最大&#xff08;或最小&#xff09;的元素&#xff0c;并将其放入到已排序的数列末尾&#xff0c;依…