阿里云安全恶意程序检测(速通一)

阿里云安全恶意程序检测

  • 赛题理解
    • 赛题介绍
      • 赛题说明
      • 数据说明
      • 评测指标
    • 赛题分析
      • 数据特征
      • 解题思路
  • 数据探索
    • 数据特征类型
    • 数据分布
      • 箱型图
    • 变量取值分布
      • 缺失值
      • 异常值
      • 分析训练集的tid特征
      • 标签分布
      • 测试集数据探索同上
    • 数据集联合分析
      • file_id分析
      • API分析
  • 特征工程与基线模型
    • 构造特征与特征选择
      • 基于数据类型的方法
      • 基于多分析视角的方法
      • 特征选择
    • 构造线下验证集
      • 评估穿越
      • 训练集和测试集的特征性差异
      • 训练集和测试集是分布差异性
    • 基线模型
      • 特征工程
      • 基线构建
      • 特征重要性分析
      • 模型测试

赛题理解

赛题介绍

赛题说明

本题目提供的数据来自经过沙箱程序模拟运行后的API指令序列,全为Windows二进制可执行程序,经过脱敏处理:样本数据均来自互联网,其中恶意文件的类型有感染型病毒、木马程序、挖矿程序、DDoS 木马、勒索病毒等,数据总计6亿条。

注:什么是沙箱程序?
在计算机安全中,沙箱(Sandbox)是一种用于隔离正在运行程序的安全机制,通常用于执行未经测试或者不受信任的程序或代码,它会为待执行的程序创建一个独立的执行环境,内部程序的执行不会影响到外部程序的运行。

数据说明

在这里插入图片描述

评测指标

在这里插入图片描述
需特别注意,log 对于小于1的数是非常敏感的。比如log0.1和log0.000 001的单个样本的误差为10左右,而log0.99和log0.95的单个误差为0.1左右。

logloss和AUC的区别:AUC只在乎把正样本排到前面的能力,logloss更加注重评估的准确性。如果给预测值乘以一个倍数,则AUC不会变,但是logloss 会变。

赛题分析

数据特征

在这里插入图片描述
本赛题的特征主要是API接口的名称,这是融合时序与文本的数据,同时接口名称基本表达了接口用途。因此,最基本、最简单的特征思路是对所有API数据构造CountVectorizer特征

说明: CountVectorizer 是属于常见的特征数值计算类,是一个文本特征提取方法。对于每一个训练文本,它只考虑每种词汇在该训练文本中出现的频率。

解题思路

本赛题根据官方提供的每个文件对API的调用顺序及线程的相关信息按文件进行分类,将文件属于每个类的概率作为最终的结果进行提交,并采用官方的logloss作为最终评分,属于典型的多分类问题

数据探索

数据特征类型

train.info()
train.head(5)
train.describe()

数据分布

箱型图

#使用箱型图查看单个变量的分布情况。
#取前10000条数据绘制tid变量的箱型图
#os:当数据量太大时,变量可视化取一部分
sns.boxplot(x = train.iloc[:10000]["tid"])

在这里插入图片描述

变量取值分布

#用函数查看训练集中变量取值的分布
train.nunique()

缺失值

#查看缺失值
train.isnull().sum()

异常值

#异常值:分析训练集的index特征
train['index'].describe()

分析训练集的tid特征

#分析训练集的tid特征
train['tid'].describe()

标签分布

#统计标签取值的分布情况
train['label'].value_counts()

直观化:

train['label'].value_counts().sort_index().plot(kind = 'bar')

在这里插入图片描述

train['label'].value_counts().sort_index().plot(kind = 'pie')

在这里插入图片描述

测试集数据探索同上

数据集联合分析

file_id分析

#对比分析file_id变量在训练集和测试集中分布的重合情况:
train_fileids = train['file_id'].unique()
test_fileids = test['file_id'].unique()
len(set(train_fileids) - set(test_fileids))

API分析

#对比分析API变量在训练集和测试集中分布的重合情况
train_apis = train['api'].unique()
test_apis = test['api'].unique()
set(set(test_apis) - set(train_apis))

特征工程与基线模型

构造特征与特征选择

基于数据类型的方法

在这里插入图片描述

基于多分析视角的方法

这是最常见的一种特征构造方法,在所有的基于table 型(结构化数据)的比赛中都会用到。

我们以用户是否会在未来三天购买同一物品为例,来说明此类数据的构建角度:用户长期购物特征,用户长期购物频率;用户短期购物特征,用户近期购物频率;物品受欢迎程度,该物品最近受欢迎程度;

用户对此类产品的喜好特征:用户之前购买该类/该商品的频率等信息;

时间特征:是否到用户发工资的时间段:商品是否为用户的必备品,如洗漱用品、每隔多长时间必买等。

特征选择

特征选择主要包含过滤法、包装法和嵌入法三种,前面已经介绍过。

构造线下验证集

在数据竞赛中,为了防止选手过度刷分和作弊,每日的线上提交往往是有次数限制的。因此,线下验证集的构造成为检验特征工程、模型是否有效的关键。在构造线下验证集时,我们需要考虑以下几个方面的问题。

评估穿越

评估穿越最常见的形式是时间穿越和会话穿越两种。

1.时间穿越

例1: 假设我们需要预测用户是否会去观看视频B,在测试集中需要预测用户8月8日上午10:10点击观看视频B的概率,但是在训练集中已经发现该用户8月8日上午10:09在观看视频A,上午10:11 也在观看视频A,那么很明显该用户就有非常大的概率不看视频B,通过未来的信息很容易就得出了该判断。

例2: 假设我们需要预测用户9月10日银行卡的消费金额,但是在训练集中已经出现了该用户银行卡的余额在9月9日和9月11日都为0,那么我们就很容易知道该用户在9月10日的消费金额是0,出现了时间穿越的消息。

2.会话穿越

以电商网站的推荐为例,当用户在浏览某一个商品时,某个推荐模块会为他推荐多个商品进行展现,用户可能会点击其中的一个或几个。为了描述方便,我们将这些一 次展现中产生的,点击和未点击的数据合起来称为一 次会话(不同于计算机网络中会话的概念)。在上面描述的样本划分方法中,一次会话中的样本可能有一部分被划分到训练集,另一部分被划分到测试集。这样的行为,我们称之为会话穿越。

会话穿越的问题在于,由于一个会话对应的是
一个用户在一次展现中的行为,因此存在较高的相关性,穿越会带来类似上面提到的用练习题考试的问题。此外,会话本身是不可分割的,也就是说,在线上使用模型时,不可能让你先看到一次会话的一部分,然后让你预测剩余的部分,因为会话的展现结果是一次性产生的,一旦产生后,模型就已经无法干预展现的结果了。

3.穿越本质

穿越本质上是信息泄露的问题。无论时间穿越,还是会话穿越,其核心问题都是训练数据中的信息以不同方式、不同程度泄露到了测试数据中。.

训练集和测试集的特征性差异

我们用训练集训练模型,当训练集和测试集的特征分布有差异时,就容易造成模型偏差,导致预测不准确。常见的训练集和测试集的特征差异如下:

数值特征:训练集和测试集的特征分布交叉部分极小;
在这里插入图片描述
类别特征:测试集中的特征大量未出现在训练集中。例如,在微软的一场比赛中,测试集中的很多版本未出现在训练集中。

在某些极端情况下,训练集中极强的特征会在测试集中全部缺失。

训练集和测试集是分布差异性

训练集和测试集的分布差异性的判断步骤如下:
将训练集的数据标记为label=1,将测试集的数据标记为label= 0。对训练集和测试集做5折的auc交叉验证。如果auc在0.5附近,那么则说明训练集和测试集的分布差异不大:如果auc在0.9附近,那么则说明训练集和测试集的分布差异很大。

基线模型

导包 -> 读取数据 -> 特征工程

特征工程

·利用count()函数和nunique()函数生成特征:反应样本调用api,tid,index的频率信息


def simple_sts_features(df):simple_fea = pd.DataFrame()simple_fea['file_id'] = df['file_id'].unique()simple_fea = simple_fea.sort_values('file_id')df_grp = df.groupby('file_id')simple_fea['file_id_api_count'] = df_grp['api'].count().valuessimple_fea['file_id_api_nunique'] = df_grp['api'].nunique().valuessimple_fea['file_id_tid_count'] = df_grp['tid'].count().valuessimple_fea['file_id_tid_nunique'] = df_grp['tid'].nunique().valuessimple_fea['file_id_index_count'] = df_grp['index'].count().valuessimple_fea['file_id_index_nunique'] = df_grp['index'].nunique().valuesreturn simple_fea

·利用main(),min(),std(),max()函数生成特征:tid,index可认为是数值特征,可提取对应的统计特征。


def simple_numerical_sts_features(df):simple_numerical_fea = pd.DataFrame()simple_numerical_fea['file_id'] = df['file_id'].unique()simple_numerical_fea = simple_numerical_fea.sort_values('file_id')df_grp = df.groupby('file_id')simple_numerical_fea['file_id_tid_mean'] = df_grp['tid'].mean().valuessimple_numerical_fea['file_id_tid_min'] = df_grp['tid'].min().valuessimple_numerical_fea['file_id_tid_std'] = df_grp['tid'].std().valuessimple_numerical_fea['file_id_tid_max'] = df_grp['tid'].max().valuessimple_numerical_fea['file_id_index_mean'] = df_grp['index'].mean().valuessimple_numerical_fea['file_id_index_min'] = df_grp['index'].min().valuessimple_numerical_fea['file_id_index_std'] = df_grp['index'].std().valuessimple_numerical_fea['file_id_index_max'] = df_grp['index'].max().valuesreturn simple_numerical_fea

·利用定义的特征生成函数,并生成训练集和测试集的统计特征。

%%time
#统计api,tid,index的频率信息的特征统计
simple_train_fea1 = simple_sts_features(train)
%%time
simple_test_fea1 = simple_sts_features(test)
%%time
#统计tid,index等数值特征的特征统计
simple_train_fea2 = simple_numerical_sts_features(train)
%%time
simple_test_fea2 = simple_numerical_sts_features(test)

基线构建

获取标签:

#获取标签
train_label = train[['file_id','label']].drop_duplicates(subset=['file_id','label'],keep='first')
test_submit = test[['file_id']].drop_duplicates(subset=['file_id'],keep='first')

训练集和测试集的构建:

#训练集和测试集的构建
train_data = train_label.merge(simple_train_fea1,on = 'file_id',how = 'left')
train_data = train_data.merge(simple_train_fea2,on = 'file_id',how = 'left')test_submit = test_submit.merge(simple_test_fea1,on = 'file_id',how = 'left')
test_submit = test_submit.merge(simple_test_fea2,on = 'file_id',how = 'left')

因为本赛题给出的指标和传统的指标略有不同,所以需要自己写评估指标,这样方便对比线下与线上的差距,以判断是否过拟合、是否出现线上线下不一致的问题等。
在这里插入图片描述

#关于LGB的自定义评估指标的书写
def lgb_logloss(preds,data):labels_ = data.get_label()classes_ = np.unique(labels_)preds_prob = []for i in range(len(classes_)):preds_prob.append(preds[i * len(labels_):(i+1)*len(labels_)])preds_prob_ = np.vstack(preds_prob)loss = []for i in range(preds_prob_.shape[1]):  #样本个数sum_ = 0for j in range(preds_prob_.shape[0]):  #类别个数pred = preds_prob_[j,i]  #第i个样本预测为第j类的概率if j == labels_[i]:sum_ += np.log(pred)else:sum_ += np.log(1 - pred)loss.append(sum_)return 'loss is: ',-1 * (np.sum(loss) / preds_prob_.shape[1]),False

线下验证:

train_features = [col for col in train_data.columns if col not in ['label','file_id']]
train_label = 'label'

使用5折交叉验证,采用LGB模型:

%%timefrom sklearn.model_selection import StratifiedKFold,KFold
params = {'task':'train','num_leaves':255,'objective':'multiclass','num_class':8,'min_data_in_leaf':50,'learning_rate':0.05,'feature_fraction':0.85,'bagging_fraction':0.85,'bagging_freq':5,'max_bin':128,'random_state':100
}folds = KFold(n_splits=5,shuffle=True,random_state = 15)  #n_splits = 5定义5折
oof = np.zeros(len(train))predict_res = 0
models = []
for fold_, (trn_idx,val_idx) in enumerate(folds.split(train_data)):print("fold n°{}".format(fold_))trn_data = lgb.Dataset(train_data.iloc[trn_idx][train_features],label = train_data.iloc[trn_idx][train_label].values)val_data = lgb.Dataset(train_data.iloc[val_idx][train_features],label = train_data.iloc[val_idx][train_label].values)clf = lgb.train(params,trn_data,num_boost_round = 2000,valid_sets = [trn_data,val_data],verbose_eval = 50,early_stopping_rounds = 100,feval = lgb_logloss)models.append(clf)

特征重要性分析

#特征重要性分析
feature_importance = pd.DataFrame()
feature_importance['fea_name'] = train_features
feature_importance['fea_imp'] = clf.feature_importance()
feature_importance = feature_importance.sort_values('fea_imp',ascending = False)
plt.figure(figsize = [20,10,])
sns.barplot(x = feature_importance['fea_name'],y = feature_importance['fea_imp'])

在这里插入图片描述
由运行结果可以看出:

(1) API的调用次数和API的调用类别数是最重要的两个特征,即不同的病毒常常会调用不同的API,而且由于有些病毒需要复制自身的原因,因此调用API的次数会明显比其他不同类别的病毒多。

(2)第三到第五强的都是线程统计特征,这也较为容易理解,因为木马等病毒经常需要通过线程监听一些内容,所以在线程等使用上会表现的略有不同。

模型测试

#模型测试
pred_res = 0
fold = 5
for model in models:pred_res += model.predict(test_submit[train_features]) * 1.0 /fold
test_submit['prob0'] = 0
test_submit['prob1'] = 0
...
test_submit[['prob0','prob1','prob2','prob3','prob4','prob5','prob6','prob7']] = pred_res
test_submit[['file_id','prob0','prob1','prob2','prob3','prob4','prob5','prob6','prob7']].to_csv('baseline.csv',index = None)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/132537.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

vcenter跨版本升级

vcenter跨版本升级(比如从6.7升级到7.0)1.如果您有VCHA,需要关闭移除 vCenter HA 配置 2. 一定要先做好VC的备份 将VC做一个内存快照以便备份 3.下载好后,在电脑上解压镜像ISO,进入这个文件夹运行程序,并…

性能优化之懒加载 - 基于观察者模式和单例模式的实现

一、引入 在前端性能优化中,关于图片/视频等内容的懒加载一直都是优化利器。当用户看到对应的视图模块时,才去请求加载对应的图像。 原理也很简单,通过浏览器提供的 IntersectionObserver - Web API 接口参考 | MDN (mozilla.org)&#xff0c…

深入理解强化学习——多臂赌博机:10臂测试平台

分类目录:《深入理解强化学习》总目录 为了大致评估贪心方法和 ϵ − \epsilon- ϵ−贪心方法相对的有效性,我们将它们在一系列测试问题上进行了定量比较。这组问题是2000个随机生成的 k k k臂赌博机问题,且 k 10 k10 k10。在每一个赌博机问…

【Head First 设计模式】-- 观察者模式

背景 客户有一个WeatherData对象,负责追踪温度、湿度和气压等数据。现在客户给我们提了个需求,让我们利用WeatherData对象取得数据,并更新三个布告板:目前状况、气象统计和天气预报。 WeatherData对象提供了4个接口: …

从零入门Chrome插件开发

什么是 Chrome 插件 谷歌浏览器在推出时就以其快速、安全和简洁的特点受到了广大用户的欢迎。随着浏览器的不断发展,谷歌为用户提供了插件开发平台,使开发者能够为浏览器添加各种功能和定制化选项。从此,插件成为了提升用户体验和个性化的重…

AI:54-基于深度学习的树木种类识别

🚀 本文选自专栏:AI领域专栏 从基础到实践,深入了解算法、案例和最新趋势。无论你是初学者还是经验丰富的数据科学家,通过案例和项目实践,掌握核心概念和实用技能。每篇案例都包含代码实例,详细讲解供大家学习。 📌📌📌在这个漫长的过程,中途遇到了不少问题,但是…

318. 最大单词长度乘积

318. 最大单词长度乘积 难度: 中等 来源: 每日一题 2023.11.06 给你一个字符串数组 words ,找出并返回 length(words[i]) * length(words[j]) 的最大值,并且这两个单词不含有公共字母。如果不存在这样的两个单词,返回 0 。 示例 1&…

Canvas 梦幻树生长动画

canvas可以制作出非常炫酷的动画&#xff0c;以下是一个梦幻树的示例。 效果图 源代码 <!DOCTYPE> <html> <head> <meta http-equiv"Content-Type" content"text/html; charsetutf-8" /> <title>梦幻数生长动画</title&…

【数据结构】树与二叉树(二):树的表示C语言:树形表示法、嵌套集合表示法、嵌套括号表示法 、凹入表示法

文章目录 5.1 树的基本概念5.1.1 树的定义5.1.2 森林的定义5.1.3 树的术语5.1.4 树的表示1&#xff0e;树形表示法2&#xff0e;嵌套集合表示法结构体创建树主函数 3&#xff0e;嵌套括号表示法结构体创建树嵌套括号表示法主函数 4&#xff0e;凹入表示法结构体创建树凹入表示法…

python调用飞书机器人发送文件

当前飞书webhook机器人还不支持发送文件类型的群消息&#xff0c;可以申请创建一个机器人应用来实现群发送文件消息。 创建机器人后&#xff0c;需要开通一系列权限&#xff0c;然后发布。由管理员审核通过后&#xff0c;才可使用。 包括如下的权限&#xff0c;可以获取群的c…

深度学习服务器(Linux)开发环境搭建教程

当你拿到一台服务器的使用权时&#xff0c;最头疼的莫过于登陆服务区并配置开发环境。本文将从0开始&#xff0c;讲述一台刚申请的服务器远程登陆并配置开发环境的全过程。希望对你有所帮助 1.登陆服务器 打开MobaXterm软件&#xff0c;创建一个新的Session&#xff0c;选择S…

图及谱聚类商圈聚类中的应用

背景 在O2O业务场景中&#xff0c;有商圈的概念&#xff0c;商圈是业务运营的单元&#xff0c;有对应的商户BD负责人以及配送运力负责任。这些商圈通常是一定地理围栏构成的区域&#xff0c;区域内包括商户和用户&#xff0c;商圈和商圈之间就通常以道路、河流等围栏进行分隔。…

MySQL EXPLAIN查看执行计划

MySQL 执⾏计划是 MySQL 查询优化器分析 SQL 查询时⽣成的⼀份详细计划&#xff0c;包括表如何连 接、是否⾛索引、表扫描⾏数等。通过这份执⾏计划&#xff0c;我们可以分析这条 SQL 查询中存在的 问题&#xff08;如是否出现全表扫描&#xff09;&#xff0c;从⽽进⾏针对优化…

双十一运动健身好物推荐,这几款健身好物一定不要错过!

双十一购物狂欢节又要到了&#xff0c;又要到买买买的时候了&#xff01;相信有很多想健身的小白还在发愁不知道买啥装备&#xff1f;别急&#xff0c;三年健身达人这就给你们分享我的年度健身好物&#xff01; 第一款&#xff1a;南卡Runner Pro4s骨传导耳机 推荐理由&#…

VSCode 连接不上 debian 的问题

之前一台笔记本上安装了 debian12&#xff0c;当时用 vscode 是可以连接上的&#xff0c;但今天连接突然就失败了&#xff0c;失败信息是这样的&#xff1a; 查看失败信息 因为 debian 是自动获取 ip 地址的&#xff0c;以前能连接上时&#xff0c;ip 地址是 104&#xff0c;然…

红队专题-新型webshell的研究

新型webshell的研究 招募六边形战士队员webshell与MemoryShell内存马新型一句话木马之Java篇 AES加密Class二进制解析友军防护为什么会被拦截SO waf防护规则END 一劳永逸绕过waf实现篇服务端实现 前言&#xff1a;你马没了利用JavaAgent技术发现并清除系统中的内存马介绍安全行…

centos7安装nginx-阿里云服务器

1.背景 2.准备工作步骤 2.1.安装gcc 阿里云服务器一般默认是安装了的 检查是否已安装 gcc -v 出现如下信息表示已安装: 如果没有安装,执行 yum -y install gcc 2.2.安装pcre,pcre-devel yum install -y pcre pcre-devel 2.3.安装zlib yum install -y zlib zlib-devel…

PS Raw中文增效工具Camera Raw 16

Camera Raw 16 for mac&#xff08;PS Raw增效工具&#xff09;的功能特色包括强大的图像调整工具。例如&#xff0c;它提供白平衡、曝光、对比度、饱和度等调整选项&#xff0c;帮助用户优化图像的色彩和细节。此外&#xff0c;Camera Raw 16的界面简洁易用&#xff0c;用户可…

Python + Selenium,分分钟搭建 Web 自动化测试框架!

在程序员的世界中&#xff0c;一切重复性的工作&#xff0c;都应该通过程序自动执行。「自动化测试」就是一个最好的例子。 随着互联网应用开发周期越来越短&#xff0c;迭代速度越来越快&#xff0c;只会点点点&#xff0c;不懂开发的手工测试&#xff0c;已经无法满足如今的…

【小白专用】PHP中的JSON转换操作指南 23.11.06

一、JSON的基础知识 1.1JSON数据格式 JSON数据格式是一组键值对的集合&#xff0c;通过逗号分隔。键值对由“键”和“值”组成&#xff0c;中间使用冒号分隔。JSON数据格式可以嵌套&#xff0c;而且可以使用数组 二、PHP中的JSON函数 JSON的操作需要使用编程语言进行处理&am…