计算机毕设 基于大数据的抖音短视频数据分析与可视化 - python 大数据 可视化

文章目录

  • 0 前言
  • 1 课题背景
  • 2 数据清洗
  • 3 数据可视化
    • 地区-用户
    • 观看时间
    • 分界线
    • 每周观看
    • 观看路径
    • 发布地点
    • 视频时长
    • 整体点赞、完播
  • 4 进阶分析
    • 相关性分析
    • 留存率
  • 5 深度分析
    • 客户价值判断
  • 5 最后


0 前言

🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。

为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天要分享的是

🚩 基于大数据的抖音短视频数据分析与可视化

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:3分

1 课题背景

本项目是大数据—基于抖音用户数据集的可视化分析。抖音作为当下非常热门的短视频软件,其背后的数据有极高的探索价值。本项目根据1737312条用户行为数据,利用python工具进行由浅入深的内容分析,目的是挖掘其中各类信息,更好地进行内容优化、产品运营。

2 数据清洗

数据信息查看

简单看一下前5行数据,确定需要进一步预处理的内容:数据去重、删除没有意义的第一列,部分列格式转换、异常值检测。

# 读取数据
df = pd.read_csv('data.csv')
df.head()

在这里插入图片描述

df.info()

在这里插入图片描述

数据去重

无重复数据

print('去重前:',df.shape[0],'行数据')
print('去重后:',df.drop_duplicates().shape[0],'行数据')

缺失值查看

print(np.sum(df.isnull()))

在这里插入图片描述

变量类型转换

real_time 和 date 转为时间变量,id、城市编码转为字符串,并把小数点去掉

df['date'] = df['date'].astype('datetime64[ns]')
df['real_time'] = df['real_time'].astype('datetime64[ns]')
df['uid'] = df['uid'].astype('str')
df['user_city'] = df['user_city'].astype('str')
df['user_city'] = df['user_city'].apply(lambda x:x[:-2])
df['item_id'] = df['item_id'].astype('str')
df['author_id'] = df['author_id'].astype('str')
df['item_city'] = df['item_city'].astype('str')
df['item_city'] = df['item_city'].apply(lambda x:x[:-2])
df['music_id'] = df['music_id'].astype('str')
df['music_id'] = df['music_id'].apply(lambda x:x[:-2])
df.info()

在这里插入图片描述

3 数据可视化

基本信息的可视化,面向用户、创作者以及内容这三个维度进行,构建成分画像,便于更好地针对用户、创作者进行策略投放、内容推广与营销。

地区-用户

user_city_count = user_info.groupby(['user_city']).count().sort_values(by=['uid'],ascending=False)
x1 = list(user_city_count.index)
y1 = user_city_count['uid'].tolist()
len(y1)

不同地区用户数量分布图

#柱形图代码
chart = Bar()
chart.add_xaxis(x1)
chart.add_yaxis('地区使用人数', y1, color='#F6325A',itemstyle_opts={'barBorderRadius':[60, 60, 20, 20]},label_opts=opts.LabelOpts(position='top'))
chart.set_global_opts(datazoom_opts=opts.DataZoomOpts(range_start=0,range_end=5,orient='horizontal',type_='slider',is_zoom_lock=False,  pos_left='1%' ),visualmap_opts=opts.VisualMapOpts(is_show = False,type_='opacity',range_opacity=[0.2, 1]),title_opts=opts.TitleOpts(title="不同地区用户数量分布图",pos_left='40%'),legend_opts=opts.LegendOpts(pos_right='10%',pos_top='2%'))
chart.render_notebook()

在这里插入图片描述

覆盖到了387个城市,其中编号为99的城市用户比较多超过2000人,6、129、109、31这几个城市的使用人数也超过了1000。

  • 可以关注用户较多城市的特点,对产品受众有进一步的把握。
  • 用户较少的城市可以视作流量洼地,考虑进行地推/用户-用户的推广,增加地区使用人数。

观看时间

h_num = round((df.groupby(['H']).count()['uid']/10000),1).to_list()
h = list(df.groupby(['H']).count().index)

不同时间观看数量分布图

chart = Line()
chart.add_xaxis(h)
chart.add_yaxis('观看数/(万)',h_num, areastyle_opts=opts.AreaStyleOpts(color = '#1AF5EF',opacity=0.3),itemstyle_opts=opts.ItemStyleOpts(color='black'),label_opts=opts.LabelOpts(font_size=12))
chart.set_global_opts(legend_opts=opts.LegendOpts(pos_right='10%',pos_top='2%'),title_opts=opts.TitleOpts(title="不时间观看数量分布图",pos_left='40%'),)
chart.render_notebook()

去掉时差后
在这里插入图片描述

根据不同时间的观看视频数量来看,11-18,20-21,尤其是13-16是用户使用的高峰期

  • 在用户高浏览的时段进行广告的投放,曝光量更高
  • 在高峰段进行优质内容的推荐,效果会更好

分界线

点赞/完播率分布图

left = df.groupby(['H']).sum()[['finish','like']]
right = df.groupby(['H']).count()['uid']
per = pd.concat([left,right],axis=1)
per['finish_radio'] = round(per['finish']*100/per['uid'],2)
per['like_radio'] = round(per['like']*100/per['uid'],2)
x = list(df.groupby(['H']).count().index)
y1 = per['finish_radio'].to_list()
y2 = per['like_radio'].to_list()
#建立一个基础的图形
chart1 = Line()
chart1.add_xaxis(x)
chart1.add_yaxis('完播率/%',y1,is_smooth=True,label_opts=opts.LabelOpts(is_show=False),is_symbol_show = False,linestyle_opts=opts.LineStyleOpts(color='#F6325A',opacity=.7,curve=0,width=2,type_= 'solid' ))
chart1.set_global_opts(yaxis_opts =  opts.AxisOpts(min_=25,max_=45))
chart1.extend_axis(yaxis=opts.AxisOpts(min_=0.4,max_=3))
#叠加折线图
chart2 = Line()   
chart2.add_xaxis(x)
chart2.add_yaxis('点赞率/%',y2,yaxis_index=1,is_smooth=True,label_opts=opts.LabelOpts(is_show=False),is_symbol_show = False,linestyle_opts=opts.LineStyleOpts(color='#1AF5EF',opacity=.7,curve=0,width=2,type_= 'solid' ))
chart1.overlap(chart2) 
chart1.set_global_opts(legend_opts=opts.LegendOpts(pos_right='10%',pos_top='2%'),title_opts=opts.TitleOpts(title="点赞/完播率分布图",pos_left='40%'),)chart1.render_notebook()

在这里插入图片描述

关注到点赞率和完播率,这两个与用户粘性、创作者收益有一定关系的指标。可以看到15点是两个指标的小高峰,2、4、20、23完播较高,8、13、18、20点赞率较高。但结合观看数量与时间段的分布图,大致猜测15点深度用户较多。

  • 关注深度用户特点,思考如何增加普通用户的完播、点赞

每周观看

df['weekday'] = df['date'].dt.weekday
week = df.groupby(['weekday']).count()['uid'].to_list()
df_pair = [['周一', week[0]], ['周二', week[1]], ['周三', week[2]], ['周四', week[3]], ['周五', week[4]], ['周六', week[5]], ['周日', week[6]]]
chart = Pie()
chart.add('', df_pair,radius=['40%', '70%'],rosetype='radius',center=['45%', '50%'],label_opts=opts.LabelOpts(is_show=True,formatter = '{b}:{c}次'))
chart.set_global_opts(visualmap_opts=[opts.VisualMapOpts(min_=200000,max_=300000,type_='color', range_color=['#1AF5EF', '#F6325A', '#000000'],is_show=True,pos_top='65%')],legend_opts=opts.LegendOpts(pos_right='10%',pos_top='2%',orient='vertical'),title_opts=opts.TitleOpts(title="一周内播放分布图",pos_left='35%'),)chart.render_notebook()

在这里插入图片描述

在统计的时间内周一到周三观看人数较多,但总体观看次数基本在20-30w之间。

  • 创作者选择在周一-三这几天分布可能会收获更多的观看数量

观看路径

df.groupby(['channel']).count()['uid']

在这里插入图片描述

观看途径主要以1为主,初步猜测为App。3途径也有部分用户使用,可能为浏览器。

  • 考虑拓宽各个观看渠道,增加总体播放量和产品使用度
  • 非主渠道观看,制定策略提升转化,将流量引入主渠道
  • 针对主要渠道内容进行商业化策略投放,效率更高

发布地点

author_info = df.drop_duplicates(['author_id','item_city'])[['author_id','item_city']]
author_info.info()
author_city_count = author_info.groupby(['item_city']).count().sort_values(by=['author_id'],ascending=False)
x1 = list(author_city_count.index)
y1 = author_city_count['author_id'].tolist()
df.drop_duplicates(['author_id']).shape[0]

不同城市创作者分布图

chart = Bar()
chart.add_xaxis(x1)
chart.add_yaxis('地区创作者人数', y1, color='#F6325A',itemstyle_opts={'barBorderRadius':[60, 60, 20, 20]})
chart.set_global_opts(datazoom_opts=opts.DataZoomOpts(range_start=0,range_end=5,orient='horizontal',type_='slider',is_zoom_lock=False,  pos_left='1%' ),visualmap_opts=opts.VisualMapOpts(is_show = False,type_='opacity',range_opacity=[0.2, 1]),legend_opts=opts.LegendOpts(pos_right='10%',pos_top='2%'),title_opts=opts.TitleOpts(title="不同城市创作者分布图",pos_left='40%'))
chart.render_notebook()

在这里插入图片描述

观看用户地区分布和创作者分布其实存在不对等的情况。4地区创作者最多,超5k人,33、42、10地区创作者也较多。

  • 创作者与地区的联系也值得关注,尤其是创作内容如果和当地风俗环境人文有关
  • 相邻近地区的优质的创作者之间互动,可以更好的引流

视频时长

time = df.drop_duplicates(['item_id'])[['item_id','duration_time']]
time = time.groupby(['duration_time']).count()
x1 = list(time.index)
y1 = time['item_id'].tolist()

不同时长作品分布图

chart = Bar()
chart.add_xaxis(x1)
chart.add_yaxis('视频时长对应视频数', y1, color='#1AF5EF',itemstyle_opts={'barBorderRadius':[60, 60, 20, 20]},label_opts=opts.LabelOpts(font_size=12,  color='black'))
chart.set_global_opts(datazoom_opts=opts.DataZoomOpts(range_start=0,range_end=50,orient='horizontal',type_='slider'),visualmap_opts=opts.VisualMapOpts(max_=100000,min_=200,is_show = False,type_='opacity',range_opacity=[0.4, 1]),legend_opts=opts.LegendOpts(pos_right='10%',pos_top='2%'),title_opts=opts.TitleOpts(title="不同时长作品分布图",pos_left='40%'))chart.render_notebook() 

在这里插入图片描述

视频时长主要集中在9-10秒,符合抖音“短”视频的特点。

  • 官方提供9/10秒专用剪视频模板,提高创作效率
  • 创作者关注创意浓缩和内容提炼
  • 视频分布在这两个时间点的爆发也能侧面反映用户刷视频的行为特征

整体点赞、完播

like_per = 100*np.sum(df['like'])/len(df['like'])
finish_per = 100*np.sum(df['finish'])/len(df['finish'])
gauge = Gauge()
gauge.add("",[("视频互动率", like_per),['完播率',finish_per]],detail_label_opts=opts.LabelOpts(is_show=False,font_size=18),axisline_opts=opts.AxisLineOpts(linestyle_opts=opts.LineStyleOpts(color=[(0.3, "#1AF5EF"), (0.7, "#F6325A"), (1, "#000000")],width=20)))
gauge.render_notebook()

在这里插入图片描述

内容整体完播率非常接近40%,点赞率在1%左右

  • 用户更多是“刷”视频,挖掘吸引力和作品连贯性,能更好留住用户
  • 点赞功能挖掘不够,可尝试进行ABtest,对点赞按钮增加动画,测试是否会提升点赞率

4 进阶分析

相关性分析

df_cor = df[['finish','like','duration_time','H']] # 只选取部分
cor_table = df_cor.corr(method='spearman')
cor_array = np.array(cor_table)
cor_name = list(cor_table.columns)
value = [[i, j, cor_array[i,j]] for i in [3,2,1,0] for j in [0,1,2,3]] 
heat = HeatMap()
heat.add_xaxis(cor_name)
heat.add_yaxis("",cor_name,value,label_opts=opts.LabelOpts(is_show=True, position="inside"))
heat.set_global_opts(visualmap_opts=opts.VisualMapOpts(is_show=False, max_=0.08, range_color=["#1AF5EF", "#F6325A", "#000000"]))
heat.render_notebook()

在这里插入图片描述

因为变量非连续,采取spearman相关系数,制作相关性热力图。由于数据量比较大的缘故,几个数量性变量之间的相关性都比较小,其中看到finish和点赞之间的相关系数稍微大一些,可以一致反映用户对该视频的偏好。

留存率

pv/uv

temp = df['date'].to_list()
puv = df.groupby(['date']).agg({'uid':'nunique','item_id':'count'})
uv = puv['uid'].to_list()
pv = puv['item_id'].to_list()
time = puv.index.to_list()
chart1 = Line()
chart1.add_xaxis(time)
chart1.add_yaxis('uv',uv,is_smooth=True,label_opts=opts.LabelOpts(is_show=False),is_symbol_show = False,linestyle_opts=opts.LineStyleOpts(color='#1AF5EF',opacity=.7,curve=0,width=2,type_= 'solid' ))
chart1.add_yaxis('pv',pv,is_smooth=True,label_opts=opts.LabelOpts(is_show=False),is_symbol_show = False,linestyle_opts=opts.LineStyleOpts(color='#F6325A',opacity=.7,curve=0,width=2,type_= 'solid' ))
chart1.render_notebook()

在这里插入图片描述

在2019.10.18进入用户使用高峰阶段,目标用户单人每天浏览多个视频。

  • 关注高峰时间段,是否是当下推荐算法起作用了

7/10 留存率

lc = []
for i in range(len(time)-7):bef = set(list(df[df['date']==time[i]]['uid']))aft = set(list(df[df['date']==time[i+7]]['uid']))stay = bef&aftper = round(100*len(stay)/len(bef),2)lc.append(per)lc1 = []
for i in range(len(time)-1):bef = set(list(df[df['date']==time[i]]['uid']))aft = set(list(df[df['date']==time[i+1]]['uid']))stay = bef&aftper = round(100*len(stay)/len(bef),2)lc1.append(per)
x7 = time[0:-7]
chart1 = Line()
chart1.add_xaxis(x7)
chart1.add_yaxis('七日留存率/%',lc,is_smooth=True,label_opts=opts.LabelOpts(is_show=False),is_symbol_show = False,linestyle_opts=opts.LineStyleOpts(color='#F6325A',opacity=.7,curve=0,width=2,type_= 'solid' ))
chart1.set_global_opts(legend_opts=opts.LegendOpts(pos_right='10%',pos_top='2%'),title_opts=opts.TitleOpts(title="用户留存率分布图",pos_left='40%'),)chart1.render_notebook()

在这里插入图片描述

用户留存率保持在40%+,且没有跌破30%,说明获取到的数据中忠实用户较多。

  • 存在一定可能性是因为数据只爬取了特定用户群体的行为数据,结合创作者数量>用户数量可得到验证
  • 但一定程度可以反映软件留存这块做的不错

5 深度分析

客户价值判断

通过已观看数、完播率、点赞率进行用户聚类,价值判断

df1 = df.groupby(['uid']).agg({'item_id':'count','like':'sum','finish':'sum'})
df1['like_per'] = df1['like']/df1['item_id']
df1['finish_per'] = df1['finish']/df1['item_id']
ndf1 = np.array(df1[['item_id','like_per','finish_per']])#.shape
kmeans_per_k = [KMeans(n_clusters=k).fit(ndf1) for k in range(1,8)]
inertias = [model.inertia_ for model in kmeans_per_k]
chart = Line(init_opts=opts.InitOpts(width='560px',height='300px'))
chart.add_xaxis(range(1,8))
chart.add_yaxis("",inertias,label_opts=opts.LabelOpts(is_show=False),linestyle_opts=opts.LineStyleOpts(color='#F6325A',opacity=.7,curve=0,width=3,type_= 'solid' ))
chart.render_notebook()

在这里插入图片描述

n_cluster = 4
cluster = KMeans(n_clusters=n_cluster,random_state=0).fit(ndf1)
y_pre = cluster.labels_ # 查看聚好的类
from sklearn.metrics import silhouette_score
from sklearn.metrics import silhouette_samples
silhouette_score(ndf1,y_pre) 
n_cluster = 3
cluster = KMeans(n_clusters=n_cluster,random_state=0).fit(ndf1)
y_pre = cluster.labels_ # 查看聚好的类
from sklearn.metrics import silhouette_score
from sklearn.metrics import silhouette_samples
silhouette_score(ndf1,y_pre)

比较三类、四类的轮廓系数,确定聚为3类

c_ = [[],[],[]]
c_[0] = [87.998,9.1615,39.92]
c_[1] = [13.292,12.077,50.012]
c_[2] = [275.011,8.125,28.751]
bar = Bar(init_opts=opts.InitOpts(theme='macarons',width='1000px',height='400px')) # 添加分类(x轴)的数据
bar.add_xaxis(['播放数','点赞率(千分之)','完播率(百分之)'])
bar.add_yaxis('0', [round(i,2) for i in c_[0]], stack='stack0') 
bar.add_yaxis('1',[round(i,2) for i in c_[1]], stack='stack1') 
bar.add_yaxis('2',[round(i,2) for i in c_[2]], stack='stack2') 
bar.render_notebook()

在这里插入图片描述

可以大致对三类的内容做一个描述。

  1. 紫色 - 观看数量较少,但点赞完播率都非常高的:对内容观看有耐心,愿意产生额外性行为。因此通过观看兴趣内容打散、可以刺激用户观看更多视频。e.g.多推荐有悬念、连续性的短视频
  2. 绿色 - 观看数量适中,点赞率、完播率有所下滑,对这类用户的策略可以中和先后两种。
  3. 蓝色 - 观看数量非常多,点赞、完播率教室,这类用户更多会关注到视频前半段的内容,兴趣点可通过停留时间进行判断,但使用时间相对较长,反映产品依赖性,一定程度上来说算是核心用户。e.g.利用停留时间判断喜好,优化推荐算法,重点推荐前半段内容吸引力大的。

5 最后

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/131838.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

VR全景技术在文化展示与传播中有哪些应用?

引言: 随着科技的不断进步,虚拟现实(VR)全景技术已经成为文化展示与传播领域的一项重要工具。那么VR全景技术是如何改变文化展示与传播方式,VR全景技术又如何推动文化的传承和普及呢? 一.VR技术…

第11章_数据处理之增删改

文章目录 1 插入数据1.1 实际问题1.2 方式 1:VALUES的方式添加1.3 方式2:将查询结果插入到表中演示代码 2 更新数据演示代码 3 删除数据演示代码 4 MySQL8新特性:计算列演示代码 5 综合案例课后练习 1 插入数据 1.1 实际问题 解决方式&#…

是时候放弃 Java 序列化了

基本概念 Java 序列化和反序列化三连问: 什么是 Java 序列化和反序列化?为什么需要 Java 序列化和反序列化?如何实现 Java 序列化和反序列化? 是什么 一句话就能够说明白什么是 Java 序列化和反序列化?Java 序列化…

linux傻瓜式安装Java环境及中间件

linux配置Java环境及中间件 1.傻瓜式安装Java1.下载2.追加3.刷新测试 2.傻瓜式安装docker1.docker卸载2.docker安装 3.Docker傻瓜式安装Redis1.傻瓜式安装安装并配置 4.Docker傻瓜式安装RabbitMQ5.Docker傻瓜式安装MySql1.拉取2.配置 6.傻瓜式安装Nacos1.官网下载nacos2.SQL文件…

vue2.0 打包,nginx部署

1、修改这里为空 否则报错:vue is undefined 2、修改为hash,重点:打包dist文件运行,必须这样 3、安装ngnix,重点:使用node的包:httpserve,失败 4、重点:配置代理转发 前端…

MySQL:事务

目录 概念事务特性开始事务事务的状态事务并发问题事务隔离级别 概念 MySQL事务是一组在数据库中执行的操作,它们必须要么全部成功执行,要么全部不执行。MySQL事务被设计为确保数据库中的数据的完整性和一致性,即使在并发访问的情况下也是如…

MySQL进阶之性能优化与调优技巧

数据库开发-MySQL 1. 多表查询1.1 概述1.1.2 介绍1.1.3 分类 1.2 内连接1.3 外连接1.4 子查询1.4.1 介绍1.4.2 标量子查询1.4.3 列子查询1.4.4 行子查询1.4.5 表子查询 2. 事务2.1 介绍2.2 操作2.3 四大特性 3. 索引3.1 介绍3.2 结构3.3 语法 1. 多表查询 1.1 概述 1.1.2 介绍…

上线Spring boot-若依项目

基础环境 所有环境皆关闭防火墙与selinux 服务器功能主机IP主机名服务名称配置前端服务器192.168.231.177nginxnginx1C2G后端服务器代码打包192.168.231.178javajava、maven、nodejs4C8G数据库/缓存192.168.231.179dbmysql、redis2C4G Nginx #配置Nginxyum源 [rootnginx ~]…

基于葡萄串的采摘点定位方法

文章目录 概要所需设备方法基于RGB图像的YOLOV8目标检测基于深度图的区域种子生长利用峰值定位法来确定竖向位置核心代码演示效果概要 这里将介绍如何用图像识别方法来定位葡萄串采摘点,用于机器人自动采摘操作。 所需设备 深度相机,这里我用的是realsense-L515 方法 主…

Spring Boot Actuator 漏洞利用

文章目录 前言敏感信息泄露env 泄露配置信息trace 泄露用户请求信息mappings 泄露路由信息heapdump泄露堆栈信息 前言 spring对应两个版本,分别是Spring Boot 2.x和Spring Boot 1.x,因此后面漏洞利用的payload也会有所不同 敏感信息泄露 env 泄露配置信…

野火霸天虎 STM32F407 学习笔记_2 寄存器介绍

寄存器 虽然正式编程没有必要用寄存器编程,通常都是库函数或者 hal 库。但是还是有必要学一下原理的。 寄存器映射 芯片视图如下。 丝印:芯片上印的信息。型号,内核,生产批次等。 引脚:左上角是有小圆点的&#x…

Android性能优化--Perfetto用SQL性能分析

Android性能优化–Perfetto用SQL性能分析 文章目录 Android性能优化--Perfetto用SQL性能分析介绍Perfetto SQL 基础使用 Perfetto SQL 进行性能分析总结 本文首发地址 https://blog.csdn.net/CSqingchen/article/details/134167741 最新更新地址 https://gitee.com/chenjim/che…

Git(七).git 文件夹瘦身,GitLab 永久删除文件

目录 一、问题背景二、问题复现2.1 新建项目2.2 上传大文件2.3 上传结果 三、解决方案3.1 GitLab备份与还原1)备份2)还原 3.2 删除方式一:git filter-repo 命令【推荐】1)安装2)删除本地仓库文件3)重新关联…

将 UniLinks 与 Flutter 集成(安卓 AppLinks + iOS UniversalLinks)

让我们使用 Flutter Mobile 和 Flutter Web 集成 UniLinks。 一步一步的指导! 我是 Pedro Dionsio,是葡萄牙 InspireIT 公司的 Flutter 开发人员,我写这个 UniLinks 教程的座右铭是: Firebase DynamicLinks 已被弃用&#xff0…

机器学习笔记 - 感知器的数学表达

一、假设前提 感知机(或称感知器,Perceptron)是Frank Rosenblatt在1957年就职于Cornell航空实验室(Cornell Aeronautical Laboratory)时所发明的一种人工神经网络。 它可以被视为一种最简单形式的前馈神经网络,是一种二元线性分类模型,其输入为实例的特征向量,输出为实…

同为科技(TOWE)自动断电倒计时定时桌面PDU插排

在每个家庭中,插排插座都是必不可少的电源设备。随着各种电器的普及应用和生活节奏的加快,人们对插排也有着多样化的需求,比如在插排中加入定时开关、自动断电、断电记忆、倒计时等等功能,让原本不支持智能家居的用电器秒变智能。…

Mysql高级——Mysql8一主一从,多主多从搭建

修改 /etc/hosts文件 ip地址 master1 ip地址 master2 ip地址 slave1 ip地址 slave2一主一从 create database master1db;create table master1db.master1tab(name char(50));insert into master1db.master1tab VALUES(1111);insert into master1db.master1tab VALUES(2222);m…

Linux命令--mkdir创建目录的方法

原文网址&#xff1a;Linux命令--mkdir创建目录的方法_IT利刃出鞘的博客-CSDN博客 简介 本文介绍Linux创建目录命令--mkdir的用法。 格式 mkdir [选项] 目录… -m, –mode模式&#xff0c;设定权限<模式> (类似 chmod)&#xff0c;而不是 rwxrwxrwx 减 umask-p, --p…

按键开发环境搭建

雷电模拟器 创建虚拟机 2.设置root权限 打开按键精灵连接虚拟机 开启悬浮 mumu模拟器操作 查找端口方法 adb connect 127.0.0.1:16416 设置-应用-所有应用-按键精灵-开启悬浮 步骤二&#xff1a;开启root 处理未root&#xff1a;中途如果有如下未root的情况&#x…

基于SSM的网吧计费管理系统(有报告)。Javaee项目,ssm项目。

演示视频&#xff1a; 基于SSM的网吧计费管理系统&#xff08;有报告&#xff09;。Javaee项目&#xff0c;ssm项目。 项目介绍&#xff1a; 采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&#xff09;三层体系结构&#xff0c;通…