本章主要是二叉树的进阶部分,学习搜索二叉树可以更好理解后面的map
和set
的特性。
1.二叉搜索树概念
二叉搜索树的递归定义为:非空左子树所有元素都小于根节点的值,非空右子树所有元素都大于根节点的值,而左右子树也是二叉搜索树。
2.二叉搜索树实现
2.1.接口分析
2.1.1.查找
- 从根开始比较查找,比根大则往右边走查找,比根小则往左边走查找。
- 最多查找高度次,走到空,还没找到,则该值不存在。
2.1.2.插入
- 树为空,则直接新增节点,赋值给
root
指针 - 树不空,按二叉搜索树性质查找插入位置,插入新节点
2.1.3.删除
首先查找元素是否在二叉搜索树中,如果不存在,则返回false
。否则要删除的结点可能分下面四种情况:
- 要删除的结点无孩子结点
- 要删除的结点只有左孩子结点
- 要删除的结点只有右孩子结点
- 要删除的结点有左、右孩子结点
看起来有待删除节点有四种情况,实际情况1
可以与情况2
或者3
合并起来,因此真正的删除过程如下:
-
情况
1
:删除该结点且使被删除节点的双亲结点指向被删除结点的左/右孩子结点(直接删除)) -
情况
2
:在它的右子树中寻找中序下的第一个结点(关键码最小,也就是右子树中最小的结点),用它的值填补到被删除节点中,再来处理该结点的删除问题(替换法删除)补充:实际上情况
2
找左子树的最大节点也是可以的。
上述体现了一种“托孤”的现象,这和Linux
中孤儿进程的托孤很是类似。
2.2.具体实现
#include <iostream>
#include <string>
using namespace std;template<typename K>//这里更加习惯写K,也就是关键值key的类型
struct BinarySearchTreeNode
{BinarySearchTreeNode<K>* _left;BinarySearchTreeNode<K>* _right;K _key; BinarySearchTreeNode(K key = K()) : _key(key), _left(nullptr), _right(nullptr) {}
};template<typename K>
class BinarySearchTree
{typedef BinarySearchTreeNode<K> Node;
public://BinarySearchTree() : _root(nullptr) {}BinarySearchTree() = default;//强制编译器生成默认的构造函数BinarySearchTree(const BinarySearchTree<K>& b){_root = copy(b._root);}BinarySearchTree<K>& operator=(BinarySearchTree<K> b)//b拷贝了一份{swap(_root, b._root);return *this;}~BinarySearchTree(){destroy(_root);}//1.插入bool insert(const K& key){/*对于第一个插入的节点就是根节点。至于数据冗余,我在这里定义不允许数据冗余,也就是不允许出现重复的数据节点。这样的搜索二叉树会受到数据先后顺序插入的影响(您也可定义允许)*///1.查看是否根节点if (_root == nullptr){_root = new Node(key);return true;}//2.寻找存放的位置Node* parent = nullptr;//存放root的父节点Node* root = _root;//遍历,从根节点开始while (root)//直到空为止{parent = root;if (root->_key < key) {root = root->_right;}else if(root->_key > key){root = root->_left;}else//root->_key == key{return false;//默认不允许重复数据}}//3.插入节点及数据root = new Node(key);if (parent->_key < key)//注意不可以直接赋值给root,不仅内存泄露还连接不上节点{parent->_right = root;}else{parent->_left = root;}return true;}bool insertR(const K& key){return _insertR(_root, key);}//2.删除bool erase(const K& key){/*寻找被删除的节点,删除后,如果是单子节点还好,如果是多子节点就需要找到一个托孤后依旧满足二叉搜索树性质的节点,因此删除有两种情况:A.被删除节点是叶子节点 或者 被删除节点的左或右孩子为空,直接将孩子节点替换被删除节点即可B.被删除节点拥有两个子节点,取右子树中最小的节点替代被删除的节点(当然也可以取左子树的最大节点)b1.最小节点没有右孩子,最小节点直接替代被删除节点,并且将最小节点的空孩子节点交给父节点领养b2.最小节点存在右孩子,最小节点直接替代被删除节点,并且将最小节点的右孩子节点交给父节点领养最后还需要注意删除根节点,根节点没有父节点的问题*/Node* parent = nullptr;Node* cur = _root;//1.寻找节点while (cur){if (cur->_key < key){parent = cur;//不可以和下一个if语句共用,会出现cur和parenat的情况,例如:test_1()中删除10的时候cur = cur->_right;}else if (cur->_key > key){parent = cur;cur = cur->_left;}else{//2.删除节点(找到了)if (cur->_left == nullptr)//2.1.左为空{if (parent == nullptr)//避免cur是根节点,没有父节点,例如:test_1()中删除11的时候{_root = cur->_right;delete cur;return true;}if (parent->_left == cur){parent->_left = cur->_right;}else//parent->_right == cur{parent->_right = cur->_right;}delete cur;}else if (cur->_right == nullptr)//2.2.右为空{if (parent == nullptr){_root = cur->_left;delete cur;return true;}if (parent->_left == cur){parent->_left = cur->_left;}else//parent->_right == cur{parent->_right = cur->_left;}delete cur;}else//2.3.左右均不为空,取左子树中最大的或者取右子树中最小的节点替代被删除的节点{Node* pminRight = cur;//注意不能为nullptr,因为有可能出现不进循环的情况Node* minRight = cur->_right;//我们选择找右数最小节点while (minRight->_left != nullptr)//找到最左节点,但是需要注意这个最左节点如果有右树,那就需要最左节点的父节点接管{pminRight = minRight;minRight = minRight->_left;}cur->_key = minRight->_key;//替换相当于删除if (pminRight->_left == minRight)//最左节点的父节点托管最左节点的右树,注意可能有两种情况{pminRight->_left = minRight->_right;}else if (pminRight->_right == minRight)//最左节点的父节点托管最左节点的右树,注意可能有两种情况{pminRight->_right = minRight->_right;}delete minRight;}return true;}}return false;}bool eraseR(const K& key){return _eraseR(_root, key);}//3.查找bool find(const K& key){Node* root = _root;while (root){if (root->_key < key){root = root->_right;}else if (root->_key > key){root = root->_left;}else{return true;}}return false;}bool findR(const K& key){return _findR(_root, key);}//4.打印void inOrder(){_inOrder(_root);cout << endl;}private://1.销毁(提供给析构)void destroy(Node*& root){if (root == nullptr)return;destroy(root->_left);destroy(root->_right);delete root;root = nullptr;}//2.拷贝(提供给拷贝构造)Node* copy(Node* root){if (root == nullptr){return nullptr;}Node* newroot = new Node(root->_key);newroot->_left = copy(root->_left);newroot->_right = copy(root->_right);return newroot;}//3.插入(提供给递归插入)bool _insertR(Node*& root, const K& key)//注意root是引用{if (root == nullptr){root = new Node(key);//这里由于传递的是引用,那么root就是上一级递归的root->_left或者root->_rightreturn true;}if (root->_key < key){return _insertR(root->_right, key);}else if (root->_key > key){return _insertR(root->_left, key);}else{return false;}}//4.删除(提供给递归插入)bool _eraseR(Node*& root, const K& key){if (root == nullptr)return false;if (root->_key < key){return _eraseR(root->_right, key);}else if (root->_key > key){return _eraseR(root->_left, key);}else//root->_key == key{Node* del = root;//保存要删除的节点if (root->_right == nullptr){root = root->_left;}else if (root->_left == nullptr){root = root->_right;}else//左右均不为空{Node* maxleft = root->_left;while (maxleft->_right != nullptr)//找左树的最大节点{maxleft = maxleft->_right;}swap(root->_key, maxleft->_key);return _eraseR(root->_left, key);//由于左树的最大节点必有一个空孩子节点,因此使用递归删除即可,可以看到递归的删除比非递归及其的简单明了(注意不可以直接传递maxleft,这是一个局部变量)}delete del;return true;}}//5.查找(提供给递归查找)bool _findR(Node* root, const K& key){if (root == nullptr)return false;if (root->_key == key)return true;if (root->_key < key){return _isRecursionFind(root->_left, key);}else//root->_key > key{return _isRecursionFind(root->_right, key);}}//6.打印(提供给递归打印)void _inOrder(Node* root)//注意这里不能直接就拿_root当作缺省值了,因为缺省值只能是常量或者全局变量,而_root需要使用this->_root,而this指针是函数形参,不一定传过来了,别谈使用_root了{if (root == nullptr)return;_inOrder(root->_left);cout << root->_key << " ";_inOrder(root->_right);}//?.成员变量Node* _root;
};
这里我还为您提供了三个测试样例:
//普通测试
void test_1()
{BinarySearchTree<int> b;b.insert(6);b.insert(2);b.insert(1);b.insert(4);b.insert(-2);b.insert(10);b.insert(9);b.insert(11);b.inOrder();b.erase(6);b.inOrder();b.erase(2);b.inOrder();b.erase(10);b.inOrder();b.erase(1);b.inOrder();b.erase(4);b.inOrder();b.erase(9);b.inOrder();b.erase(11);b.inOrder();b.erase(-2);b.inOrder();
}
//头删测试(需要该_root为公有成员才可以测试)
void test_2()
{BinarySearchTree<int> b;b.insert(6);b.insert(2);b.insert(1);b.insert(4);b.insert(-2);b.insert(10);b.insert(9);b.insert(11);//b.inOrder();//b.erase(b._root->_key);//b.inOrder();//b.erase(b._root->_key);//b.inOrder();//b.erase(b._root->_key);//b.inOrder();//b.erase(b._root->_key);//b.inOrder();//b.erase(b._root->_key);//b.inOrder();//b.erase(b._root->_key);//b.inOrder();//b.erase(b._root->_key);//b.inOrder();//b.erase(b._root->_key);//b.inOrder();
}
//递归测试
void test_3()
{BinarySearchTree<int> b;b.insertR(6);b.insertR(2);b.insertR(1);b.insertR(4);b.insertR(-2);b.insertR(10);b.insertR(9);b.insertR(11);BinarySearchTree<int> b1(b);b.inOrder();b.eraseR(6);b.inOrder();b.eraseR(2);b.inOrder();b.eraseR(10);b.inOrder();b.eraseR(1);b.inOrder();b.eraseR(4);b.inOrder();b.eraseR(9);b.inOrder();b.eraseR(11);b.inOrder();b.eraseR(-2);b.inOrder();b1.inOrder();b.inOrder();
}
3.二叉搜索树应用
3.1.Key模型
考虑“在不在”的问题,例如:
- 门禁系统
- 车库系统
- 单词检查、搜索…
查找对象是否在数据库中存在,这样的场景在现实中有很多。
3.2.Key/Value模型
通过一个值查找另外一个值,例如:
- 中英文互译
- 电话号码查询快递信息
- 验证码查询信息…
只需要在一个节点中包含一个数据对即可。
另外我们之前说过二叉搜索树一般不存储重复的元素,如果相同的元素可以让该元素绑定一个int
元素形成键值对,这种情况的实际应用有:统计高频词汇。
补充:实际上,上面的这两种模型对标的是
C++
的set
和map
容器,这些我们后续学习。
4.二叉搜索树分析
由于缺失平衡性,二叉搜索树在最不理想的状态(一颗斜树)查找的时间复杂度是 O ( n ) O(n) O(n),最好的效率是 O ( l o g 2 ( N ) ) O(log_{2}(N)) O(log2(N))。