基于 NGram 分词,优化 Es 搜索逻辑,并深入理解了 matchPhraseQuery 与 termQuery

基于 NGram 分词,优化 Es 搜索逻辑,并深入理解了 matchPhraseQuery 与 termQuery

    • 前言
    • 问题描述
    • 排查索引库分词(发现问题)
    • 如何去解决这个问题?
    • IK 分词器
    • NGram 分词器使用
    • 替换 NGram 分词器后进行测试
    • matchPhraseQuery 查询原理
    • termQuery 查询原理
    • 总结

前言

之前不是写过一个全局搜索的功能吗,用户在使用的时候,搜(进出口)关键字,说搜不到数据,但是 Es 中确实是有一条标题为 (202009 进出口)的数据的,按道理来说,这确实要命中的,于是我开始回想我当时是如何写的这段搜索逻辑的代码!!!!

问题描述

之前所有检索的字段全是用的 matchPhraseQuery 查询,matchPhraseQuery 命中的条件其一就是,搜索字段所有的分词都要被 Es 词库命中,其二就是命中的分词在词库中的顺序要紧挨着的。不然就没法查出数据。接下来举例帮助大家理解。

  if (StringUtils.isNotEmpty(articleRequest.getKeyword())) {for (int i = 0; i < articleRequest.getKeys().length; i++) {boolQuery.should(QueryBuilders.matchPhraseQuery(articleRequest.getKeys()[i], articleRequest.getKeyword()));}}

使用 kibana 控制台,编写一条 DLS语句,由于 Es 默认使用的分词器是用的 standard,于是查看一下查(进出口)关键字,是被分词成了(进,出,口)

POST _analyze
{"analyzer": "standard","text": "进出口"
}

在这里插入图片描述
一开始建索引的时候,所有字段都没有指定分词器,都是用的默认的 standard 分词器,因此在使用 matchPhraseQuery 的时候,无论是 title 含有(进出口)还是 body 含有(进出口)关键字的数据都能够被正常检索出来,原因就是词库也是按照(进,出,口)存储的,查的关键字也是被分词成(进,出,口)进行匹配词库查询的,所有分词:位置紧挨着、顺序一致、且完全被包含。
在这里插入图片描述
但是后来遇到一个问题就是,搜字母或者是数字,搜不到数据,例如:搜 20 ,但是明明有标题为 (202009 进出口数据 33)的数据,就搜不出来。到这里你会怎么去排查问题?接下来说下我的整个排查问题的流程。

排查索引库分词(发现问题)

基于默认的 standar 分词器查看一下, title 为 (202009 进出口数据33)是如何被分词存到词库中的

POST _analyze
{"analyzer": "standard","text": "202009 进出口数据33"
}

在这里插入图片描述
看了一下 202009 居然没有被分词,而是被当做了一个整体,当我们搜 20 的时候,是按照 20 的这个分词进行查询的,但是索引库中并没有 20 的分词,即不满足查询分词都要被词库包含的关系,更不满足分词顺序和词库保持一致,更不满足命中词库中的分词是紧挨着的条件,三大条件都不满足,能查到才怪呢?怎么去优化搜索逻辑?在这里插入图片描述

如何去解决这个问题?

接下来肯定就是优化索引库中存储的分词结构了,让 title 为( 202009 进出口数据 33) 的这条数据,存储的分词包含 (20),而不是粗略的包含一个(202009),当然你也可以使用 Es 的 模糊查询 wildcard 或者 fuzzy ,考虑到数据量过大,查询性能不咋地,决定优化索引结构,用空间换时间!!!!为什么是空间换时间?存的分词粒度都变细了,意味着存的索引体积变大,这些数据都要硬件来存储的,可不是空间换时间嘛。接下来用主流的 IK 分词器去分下词看满不满足我们的需求

IK 分词器

编写 DLS 语句,对目标数据分词,看到还是没有(20)的分词出现,直接 Pass

POST _analyze
{"analyzer": "ik_max_word","text": "202009进出口数据 33"
}

在这里插入图片描述
对字母分词一样,粒度不满足我们的需求,直接 Pass
在这里插入图片描述

NGram 分词器使用

接下来说本文的主角 NGram 分词器,分词的粒度可以由我们自己控制。在建索引的时候设置一下 Setting 代码都是固定的就好像你使用 Java Api一样,需要注意的是里面的 min_gram 指定最小分词粒度,max_gram 指定最大分词粒度。自定义分词器名字为:my_ngram_analyzer 接来举例说明,这个自定义分词器是干啥的!!!

private static String defaultIndexSetting = "{\n" +"        \"index.max_ngram_diff\":10,\n" +"        \"analysis\": {\n" +"          \"analyzer\": {\n" +"            \"my_ngram_analyzer\": {\n" +"              \"tokenizer\": \"my_ngram_tokenizer\"\n" +"            }\n" +"          },\n" +"          \"tokenizer\": {\n" +"            \"my_ngram_tokenizer\": {\n" +"              \"type\": \"ngram\",\n" +"              \"min_gram\": 1,\n" +"              \"max_gram\": 10,\n" +"              \"token_chars\": [\n" +"                \"letter\",\n" +"                \"digit\"\n" +"              ]\n" +"            }\n" +"          }\n" +"        }\n" +"      }";

由于我只对 title 字段设置了自定义分词器,mapping 如下。

 private static String defaultIndexMapping = "{\n" +"\t\"properties\": {\n" +"\t\t\"author\": {\n" +"\t\t\t\"type\": \"text\",\n" +"\t\t\t\"boost\": \"3\",\n" +"\t\t\t\"fields\": {\n" +"\t\t\t\t\"keyword\": {\n" +"\t\t\t\t\t\"type\": \"keyword\",\n" +"\t\t\t\t\t\"ignore_above\": 256\n" +"\t\t\t\t}\n" +"\t\t\t}\n" +"\t\t},\n" +"\t\t\"body\": {\n" +"\t\t\t\"type\": \"text\",\n" +"\t\t\t\"fields\": {\n" +"\t\t\t\t\"keyword\": {\n" +"\t\t\t\t\t\"type\": \"keyword\",\n" +"\t\t\t\t\t\"ignore_above\": 256\n" +"\t\t\t\t}\n" +"\t\t\t}\n" +"\t\t},\n" +"\t\t\"title\": {\n" +"\t\t\t\"boost\": \"10000\",\n" +"\t\t\t\"type\": \"text\",\n" +"\t\t\t\t\t\t        \"analyzer\": \"my_ngram_analyzer\",\n" +"\t\t\t\"fields\": {\n" +"\t\t\t\t\"keyword\": {\n" +"\t\t\t\t\t\"type\": \"keyword\",\n" +"\t\t\t\t\t\"ignore_above\": 256\n" +"\t\t\t\t}\n" +"\t\t\t}\n" +"\t\t},\n" +"\t\t\"createtime\": {\n" +"\t\t\t\"type\": \"date\",\n" +"\t\t\t\"format\": \"yyyy-MM-dd HH:mm:ss||yyyy-MM-dd\"\n" +"\t\t}\n" +"\t}\n" +"}\n";

接下来根据最新的 Setting、Mapping 配置替换之前的旧的索引,然后进行测试

log.info("create index mapping: " + tabIndex.getMapping());CreateIndexRequest indexRequest = new CreateIndexRequest(tabIndex.getIndexName().trim()).settings(tabIndex.getSetting(), XContentType.JSON).mapping("_doc", tabIndex.getMapping(), XContentType.JSON);CreateIndexResponse response = null;try {response = restHighLevelClient.indices().create(indexRequest, RequestOptions.DEFAULT);} catch (IOException e) {e.printStackTrace();tabIndexService.delete(new EntityWrapper<TabIndex>().eq("index_name", tabIndex.getIndexName()));return JsonData.buildError("失败" + e.getMessage());}if (response != null) return JsonData.buildSuccess(response.isAcknowledged());else return JsonData.buildError("失败");

替换 NGram 分词器后进行测试

输入关键字:20,发现 title 为 (202009 进出口数据 33) 的这条数据还是查不到???????what fa,再次检查索引库分词,编写 DLS 语句看看,由于创建的新索引的名称是 zza,这里对 zza 索引下面标题包含 (202009 进出口数据 33)的数据进行分词,看看 Es 是如何存的!!!

POST /zza/_analyze
{"field": "title","text": "202009 进出口数据 33"
}

可以看到此时的分词存储了 (2,20,202…)按道理来说查 2 或者 20 或者 202 等等都可以查到这条数据的。难道见鬼啦?于是我决定将代码的生成的 DLS 语句直接 Copy 到 kibana 中跑一下,看到底是代码 Api 的 Bug 还是其他问题。

在这里插入图片描述
于是我就这个 DLS 语句运行了一下,其实不是见鬼了,是我们需要理解一下 termQuery 与 matchPhraseQuery 的查询原理!!!

matchPhraseQuery 查询原理

会将搜索关键字进行分词(这个根据索引用到的分词器一致),然后与词库中的分词进行匹配。例如,现在有一条 title 为(202009 进出口数据 33)的数据,当我们搜 20 的时候,会根据(2,20,0)去匹配词库在这里插入图片描述
但是此时词库是按照(2,20,202…0)这个顺序存的。
再来回顾一下 matchPhraseQuery 命中索引的三大条件

  1. 搜索关键字分词要被词库存的分词完全包含
  2. 在点一的基础上,搜索分词顺序要和词库保持一致
  3. 在前俩点都满足的情况下,词库中匹配到的分词顺序要紧挨着

我们搜关键字 20 时,满足了上述点 1,2。但是不满足点 3,因此使用 matchPhraseQuery 搜不到 title 为(202009 进出口数据 33)的这条数据。那么有什么办法解决吗?答案是有的。就是指定 slop 参数。指定分词紧挨着的最大单位,默认是 1,通过调大这个参数也可以查出来指定数据
在这里插入图片描述
不指定 slop 的情况下查不到数据,但是我现在的需求只要是关键字中包含 20 的数据都要被查到,调 slop 也不是办法,因此 title 字段的搜索不用 matchPhraseQuery,改用 termQuery
在这里插入图片描述

termQuery 查询原理

搜索的关键字不会进行分词去匹配词库,搜 20 就会以 20 去匹配,命中词库中的一个分词即可,例如;现在有一条 title 为(202009 进出口数据 33)的数据,搜关键字 20 即可查出数据,满足现有的业务需求。
在这里插入图片描述

因此最后还改造了一下业务代码逻辑大概是这样,title 字段用 termQuery,其他字段用 matchPhraseQuery。就可以了。

if (StringUtils.isNotEmpty(articleRequest.getKeyword())) {for (int i = 0; i < articleRequest.getKeys().length; i++) {if ("title".equals(articleRequest.getKeys()[i]))boolQuery.should(QueryBuilders.termQuery(articleRequest.getKeys()[i], articleRequest.getKeyword()));elseboolQuery.should(QueryBuilders.matchPhraseQuery(articleRequest.getKeys()[i], articleRequest.getKeyword()));}boolQuery.minimumShouldMatch(1);
}

总结

matchPhraseQuery 命中条件

  1. 搜索关键字分词要被词库存的分词完全包含
  2. 在点一的基础上,搜索分词顺序要和词库保持一致
  3. 在前俩点都满足的情况下,词库中匹配到的分词顺序要紧挨着
    matchPhraseQuery 在查询前会对关键字进行分词,用到的分词器和索引中该字段指定的分词器一致,例如本文的 title 用到了 NGram 分词器,那么使用如下代码,检索 title 字段时,用到的分词器也是用的 Ngram
QueryBuilders.termQuery("title", articleRequest.getKeyword())

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/130885.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

国际物流常见风险如何规避_箱讯科技

外贸物流是国际贸易的重要环节&#xff0c;其管理和效率的高低直接影响着贸易的成本和效益。因此&#xff0c;外贸企业应该重视物流的组织和管理&#xff0c;提高物流运作的效率。 国际物流基础知识 01什么是“双清包税”和“双清不包税” 双清包税上门又叫双清包税到门&…

CMake引用OSG

从CMake执行find_package(OpenSceneGraph REQUIRED COMPONENTS osgDB osgUtil)这句;情况如下; 当前OSG已经安装好;环境变量添加了OSG_ROOT(其值是OSG安装的根目录),并且 %OSG_ROOT%\bin 添加到了path; 有一个警告,已经done了; Found osgDB: optimized;D:/OSGEarth/l…

wordpress版本识别

wordpress版本识别 1.通过RSS Feed识别 RSS Feed参考 访问网站/feed或者?feedrss 例如 默认结构&#xff1a;https://www.example.com/?feedrss2 其他结构&#xff1a;https://www.example.com/feed/ 返回结果中搜索 generator 可以看到直接是5.9.7版本 2.wpscan等工具扫一…

Powercli批量修改分布式交换机端口组

背景 需求&#xff1a; 批量修改虚拟机的分布式端口组 解决方式一&#xff1a; 三条命令解决&#xff1a;先获取目标虚拟机、获取目标端口组、修改虚拟机端口组、检查虚拟机状态。 $vm Get-VM -Name <虚拟机名称> $portGroup Get-VirtualPortGroup -Name <端口…

生成式人工智能:网络攻击者手中的破坏性力量

2022 年底&#xff0c;公开可用的生成式人工智能工具的推出使我们进入了人类历史上最大的技术革命之一。 一些人声称它的影响与互联网、手机、智能手机和社交媒体的引入一样大&#xff0c;甚至更大。这些新的生成式人工智能技术的采用和发展速度是我们以前从未见过的。 虽然这…

VBA根据Excel内容快速创建PPT

示例需求&#xff1a;根据Excel中选中的单元格内容&#xff08;3列&#xff09;如下图所示&#xff0c;在已打卡的PowerPoint文件中创建页面。 新增PPT Slide页面使用第二个模板页面&#xff0c;其中包含两个文本占位符&#xff0c;和一个图片占位符。将Excel选中区域中前两列写…

学习笔记二十七:K8S控制器Statefulset入门到企业实战应用

这里写目录标题 Statefulset控制器&#xff1a;概念、原理解读Statefulset资源清单文件编写技巧查看定义Statefulset资源需要的字段查看statefulset.spec字段如何定义&#xff1f;查看statefulset的spec.template字段如何定义 Statefulset使用案例&#xff1a;部署web站点State…

【Python基础】Python编程入门自学笔记,基础大全,一篇到底!

&#x1f4e2;&#xff1a;如果你也对机器人、人工智能感兴趣&#xff0c;看来我们志同道合✨ &#x1f4e2;&#xff1a;不妨浏览一下我的博客主页【https://blog.csdn.net/weixin_51244852】 &#x1f4e2;&#xff1a;文章若有幸对你有帮助&#xff0c;可点赞 &#x1f44d;…

虚拟机创建与连接的详细步骤

文章目录 什么是虚拟机&#xff1f;步骤1: 选择虚拟化软件1.1 VirtualBox1.2 VMware Workstation1.3 VMware Player1.4 Hyper-V 步骤2: 创建虚拟机2.1 打开虚拟化软件2.2 创建新虚拟机2.3 配置虚拟机2.4 安装操作系统2.5 启动虚拟机 步骤3: 连接虚拟机3.1 图形用户界面 (GUI)3.…

MySQL复习总结(二):进阶篇(索引)

文章目录 一、存储引擎1.1 MySQL体系结构1.2 存储引擎介绍1.3 存储引擎特点1.4 存储引擎选择 二、索引2.1 基本介绍2.2 索引结构2.3 索引分类2.4 索引语法2.5 SQL性能分析2.6 索引使用2.6.1 最左前缀法则2.6.2 范围查询2.6.3 索引失效情况2.6.4 SQL提示2.6.5 覆盖索引2.6.6 前缀…

Python基础入门例程35-NP35 朋友的年龄是否相等(运算符)

最近的博文&#xff1a; Python基础入门例程34-NP34 除法与取模运算&#xff08;运算符&#xff09;-CSDN博客 Python基础入门例程33-NP33 乘法与幂运算&#xff08;运算符&#xff09;-CSDN博客 Python基础入门例程32-NP32 牛牛的加减器&#xff08;运算符&#xff09;-CSD…

【四、http】go的http的文件下载

一、日常下载图片到本地 //下载文件func downloadfile(url, filename string) {r, err : http.Get(url)if err ! nil {fmt.Println("err", err.Error())}defer r.Body.Close()f, err : os.Create(filename)if err ! nil {fmt.Println("err", err.Error())…

Python开发技能实战-通过配置的代理服务器在具有外网连接的环境中在Pycharm中运行python代码

实现功能 打开科学上网工具&#xff0c;使得能够在浏览器科学上网&#xff0c;通过科学上网工具的配置文件&#xff0c;可以看出本地和远程代理的映射关系&#xff0c;此时&#xff0c;远程地址本地地址&#xff0c;远程端口本地端口。 1、在程序中配置请求网页代理请求。不需…

系统设计中的缓存技术:完整指南

Image.png 缓存是软件工程中用于提高系统性能和用户体验的基本技术。它通过临时存储频繁访问的数据在缓存中&#xff0c;缓存比数据的原始来源更容易访问。 作为一名软件工程师&#xff0c;了解缓存以及它在不同类型的系统中的工作方式是至关重要的。在本文中&#xff0c;我们将…

NocoDB任意文件读取漏洞复现

简介 NocoDB是一个开源 Airtable 替代品&#xff0c;可以将 MySql、PostgreSql、Sql Server、Sqlite 和 MariaDb 等转换为智能电子表格。 (CVE-2023-35843) NocoDB 0.106.0版本及之前版本存在安全漏洞。攻击者利用该漏洞可以访问服务器上的任意文件。 漏洞复现 FOFA语法&…

Iceberg教程

目录 教程来源于尚硅谷1. 简介1.1 概述1.2 特性 2. 存储结构2.1 数据文件(data files)2.2 表快照(Snapshot)2.3 清单列表(Manifest list)2.4 清单文件(Manifest file)2.5 查询流程分析 3. 与Flink集成3.1 环境准备3.1.1 安装Flink3.1.2 启动Sql-Client 3.2 语法 教程来源于尚硅…

基于单片机的滚筒洗衣机智能控制系统设计

收藏和点赞&#xff0c;您的关注是我创作的动力 文章目录 概要 一、系统整体设计方案2.1控制系统的功能2.2设计的主要内容 二、硬件设计3.1 控制系统整体框图3.2 电源电路 三 软件设计主程序设计仿真设计 四、 结论 概要 因此我们需要一个完善的智能系统来设计一个全自动滚筒洗…

GCN火车票识别项目 P2 图卷积神经网络介绍

深度学习一直都是被几大经典模型统治着&#xff0c;常见的有CNN、RNN网络&#xff0c;它们在CV和NLP领域都取得了优异的效果。但人们发现了很多CNN、RNN无法解决&#xff0c;或者效果不好的问题——图结构数据&#xff0c;如社交网络、人物关系、分子结构等&#xff0c;所以就有…

VMware产品收集日志方法汇总

概述 vCenter日志是一个用于存储与vSphere环境相关的各种活动、事件和警告的日志系统。通过收集并分析vCenter日志&#xff0c;管理员可以获得有关其虚拟化环境的重要洞察和故障排除信息。 vCenter日志由多个组件组成&#xff0c;包括vCenter Server、ESXi主机和其他vSphere组…

Tomcat运行日志乱码问题/项目用tomcat启动时窗口日志乱码

文章目录 一、问题描述&#xff1a;二、产生原因三、解决方法 一、问题描述&#xff1a; 项目在idea中运行时日志是正常的&#xff0c;用Tomcat启动时发现一大堆看不懂的文字&#xff0c;如 二、产生原因 产生乱码的根本原因就是编码和解码不一致&#xff0c;举个例子就是翻…