Java8 Stream API全面解析——高效流式编程的秘诀

文章目录

    • 什么是 Stream Api?
    • 快速入门
    • 流的操作
      • 创建流
      • 中间操作
        • filter 过滤
        • map 数据转换
        • flatMap 合并流
        • distinct 去重
        • sorted 排序
        • limit 限流
        • skip 跳过
        • peek 操作
      • 终结操作
        • forEach 遍历
        • forEachOrdered 有序遍历
        • count 统计数量
        • min 最小值
        • max 最大值
        • reduce 聚合
        • collect 收集
        • anyMatch 任意匹配
        • allMatch 全匹配
        • noneMatch 全不匹配
        • findFirst 查找第一个
        • findAny

什么是 Stream Api?

Stream流的由来可以追溯到函数式编程语言,特别是Haskell语言的概念。函数式编程强调以函数为基本构建块,并通过组合和转换函数来操作数据。

Java 8引入了Lambda表达式,使得函数式编程在Java中更加方便和实用。为了能够更好地支持函数式编程的思想,Java 8也引入了Stream流这个概念。

Stream流的设计目标是提供一种高效且易于使用的方式来对集合数据进行处理。它的设计灵感来源于Unix Shell和函数式编程语言中的管道操作符(|)。Stream流可以看作是对集合数据进行流式操作的抽象,它将数据的处理过程抽象成一系列的操作步骤,可以链式地进行操作。

通过使用Stream流,我们可以以一种声明式的方式来描述对数据的操作,而无需关心底层的实现细节。这样的好处是我们可以编写更简洁、可读性更高的代码,并且Stream API还可以自动优化并行执行,提高运行效率。

因此,Stream流的引入使得Java语言更加接近函数式编程的理念,提供了一种更现代化、高效的数据处理方式。它的出现大大简化了对集合数据的处理,使得代码更加简洁、易读,并且提供了更好的性能。

Stream 流可以让我们以一种声明式的方式对集合数据进行操作,从而简化代码并提高代码可读性和可维护性。同时,在使用流时还可以结合Lambda表达式,进一步简化代码。

Stream流的优点:

  1. 代码简洁:使用Stream API可以用更少的代码实现相同的功能,使代码更加简洁、易读。

  2. 并行支持:Stream可以自动优化并行执行,可以利用多核CPU提高运行效率。

  3. 延迟执行:Stream支持延迟执行,只有在需要输出结果的时候才会进行计算,可以减少一部分不必要的计算。

Lambda表达式的优点:

  1. 简洁高效:Lambda表达式可以让我们写出更加简洁高效的代码。

  2. 可读性好:Lambda表达式可以让代码变得更加易读,减少了冗余代码。

  3. 面向函数编程:Lambda表达式可以让Java开发者更加容易地采用函数式编程的思想。

例如,假设我们有一个整数列表,要求将其中所有大于10的数加倍,然后将结果存储在另一个列表中。

使用传统的方法,可能需要写出以下代码:

List<Integer> list = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);List<Integer> newList = new ArrayList<>();for (Integer i : list) {if (i > 10) {newList.add(i * 2);}
}

使用Stream和Lambda表达式则可以写出更为简洁的代码:

List<Integer> list = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);List<Integer> newList = list.stream().filter(i -> i > 10).map(i -> i * 2).collect(Collectors.toList());

这段代码使用了Stream的filter和map方法,以及Lambda表达式,可以一行代码实现要求。

快速入门

我们先通过一个简单的快速入门案例,体验以下Stream流的强大功能。

题目: 假设我们有一个整数列表,需要筛选出其中所有大于5的数,并将它们加倍后输出。

  • 使用 for 循环的方式实现:

    public class StreamExample {public static void main(String[] args) {// 创建一个整数集合List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);// 创建一个结果集合List<Integer> result = new ArrayList<>();//循环遍历for (Integer n : numbers) {if (n > 5) {result.add(n * 2);}}// 输出结果System.out.println(result);}
    }
    
  • 使用 Stream 流的方式实现:

    public class StreamExample {public static void main(String[] args) {// 创建一个整数集合List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);// 使用Stream流对列表进行筛选和转换操作List<Integer> result = numbers.stream().filter(n -> n > 5) // 筛选出大于5的数.map(n -> n * 2) // 将选中的数加倍.collect(Collectors.toList()); // 将结果转换为新的列表// 输出结果System.out.println(result);}
    }
    

    在代码中,我们首先创建了一个整数列表 numbers,包含了1到10的整数。

    接下来,我们使用 stream() 方法将列表转换为一个流对象。然后,通过调用 filter() 方法来筛选出大于5的数,使用 map() 方法将选中的数加倍。最后使用 collect() 方法将结果转换为一个新的列表。

    最终,通过 System.out.println() 将结果输出到控制台。

流的操作

创建流

在Java 8中提供了多种方式去完成Stream流的创建,常用方式如下:

  1. 通过单列集合创建:对于实现了 java.util.Collection 接口的集合,比如 ListSet 等,可以直接调用 stream() 方法来创建流对象。

    List<String> list = Arrays.asList("apple", "banana", "orange");
    Stream<String> stream = list.stream();
    
  2. 通过数组创建:可以通过调用 Arrays.stream() 方法来创建一个数组的流对象。

    Integer[] array = {1, 2, 3, 4, 5};
    Stream<Integer> stream = Arrays.stream(array);
    
  3. 通过双列集合创建:

    • 使用 entrySet().stream() 方法:对于 Map 类型的双列集合,可以先通过 entrySet() 方法获取键值对的 Set 集合,然后再调用 stream() 方法创建流对象。

      Map<String, Integer> map = new HashMap<>();
      // map.put() 添加元素
      Set<Map.Entry<String, Integer>> entrySet = map.entrySet();
      Stream<Map.Entry<String, Integer>> stream = entrySet.stream();
      
    • 使用 values().stream() 方法:对于 Map 类型的双列集合,也可以只获取值的集合,然后再调用 stream() 方法创建流对象。

      Map<String, Integer> map = new HashMap<>();
      // map.put() 添加元素
      Stream<Integer> stream = map.values().stream();
      
  4. 通过静态方法创建:可以通过调用 Stream.of()Stream.iterate() 来创建一个包含指定元素或无限元素的流对象。

    • Stream.of()方法:

      Stream<Integer> stream1 = Stream.of(1, 2, 3, 4, 5);
      
    • Stream.iterate()方法:

      Stream<Integer> stream2 = Stream.iterate(0, n -> n + 2).limit(5);
      

      使用 Stream.iterate() 方法创建了一个包含无限元素的流对象,每个元素都是由前一个元素应用函数生成的。在这个例子中,流对象的第一个元素为0,然后每次通过应用lambda表达式(n -> n + 2)来生成下一个元素,即将前一个元素加上2。

      接着,使用 limit() 方法来限制流对象的元素数量,使其只包含前5个元素。最终返回一个含有5个整数的Stream流对象。

      注:由于 Stream.iterate() 方法创建的是一个无限流对象,如果不调用 limit() 方法或者其他的限制操作,那么该流对象将一直产生新的元素,直到程序耗尽内存空间并抛出异常。因此,在使用 Stream.iterate() 方法创建流对象时,一定要注意对其进行限制,以避免程序崩溃。

  5. 通过文件创建:可以通过调用 Files.lines() 方法来创建一个文件的流对象。

    Path path = Paths.get("file.txt");
    Stream<String> stream = Files.lines(path);
    

中间操作

Stream 流的中间操作是指那些对流进行转换、筛选、映射等操作,并返回一个新的流的操作。Stream 对象是惰性求值的,也就是说,在我们对 Stream 对象应用终端操作之前,中间操作并不会立即执行,只有等到终端操作触发时才会执行。这样可以提高性能,避免不必要的计算。

filter 过滤

通过使用 filter() 方法,我们可以根据自定义的条件对流进行过滤操作,只保留符合条件的元素,从而得到一个新的流。

Stream<T> filter(Predicate<? super T> predicate);

filter() 方法接受一个 Predicate(谓词:对主语动作状态或特征的陈述或说明)作为参数,并返回一个包含满足条件的元素的新流。

具体来说,filter() 方法会对流中的每个元素应用给定的谓词,如果谓词返回 true,则该元素被包含在新流中;如果谓词返回 false,则该元素被过滤掉:

@FunctionalInterface
public interface Predicate<T> {boolean test(T t);
}

Predicate接口被声明为@FunctionalInterface,这意味着它可以用作 Lambda 表达式或方法引用的目标。

Predicate接口代表一个断言,用于对给定的输入进行判断。它只有一个抽象方法 test,接受一个参数并返回一个boolean值,表示输入是否满足谓词条件。

同时也意味着任何实现了Predicate接口的类或 Lambda 表达式都必须实现 test 方法,并且该方法可以在任何地方被调用或覆盖。

以下是一个示例,演示如何使用 filter() 进行过滤操作:

List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
numbers.stream().filter(n->n%2==0).forEach(System.out::println);

在上述示例中,我们首先创建了一个包含整数元素的列表 numbers。然后,使用 stream() 方法将其转换为流对象。接下来,我们调用 filter() 方法,并传入一个谓词 n -> n % 2 == 0用于筛选出偶数。最后,使用 forEach() 终端操作遍历过滤后的流,并打印每个元素。

执行 filter 过滤操作后,流内的元素变化如下:

image-20231103232435592

map 数据转换

Stream 接口定义的map方法的声明如下:

<R> Stream<R> map(Function<? super T, ? extends R> mapper);

map() 方法接受一个Function(函数)类型的参数,并将流中的每个元素按照指定的映射规则进行转换,返回一个新的Stream流。

@FunctionalInterface
public interface Function<T, R> {R apply(T t);
}

Function接口中只有一个抽象方法apply(T t),它将一个类型为T的参数作为输入,并返回一个类型为R的结果。

具体来说,map方法将对流中的每个元素应用提供的映射函数,并将其转换为另一种类型。最后将新类型的结果组合成一个新的流对象并返回。

注:map方法只会对流中的每个元素应用映射操作,不会改变流的大小或顺序。它返回的是一个新的流,因此可以链式调用其他的流操作方法。

以下是一个示例,演示如何使用 map() 进行转换操作:

List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
numbers.stream().map(n->"Number:"+n).forEach(System.out::println);

在上述示例中,我们创建了一个包含整数元素的列表 numbers。然后,使用 stream() 方法将其转换为流对象。接下来,我们调用 map() 方法,并传入一个函数 n -> "Number: " + n,该函数用于将每个整数元素转换为以 "Number: " 开头的字符串。最后,使用 forEach() 终端操作遍历转换后的流,并打印每个元素。

执行 map 转换操作后,流的元素变化如下:

image-20231103233635463

flatMap 合并流

flatMap可以将一个流中的每个元素映射为另一个流,并将这些流合并成一个单独的流。

具体来说,flatMap方法接受一个将每个元素转换为流的函数,然后将所有转换后的流合并成一个单独的流。因此,它可以用于将嵌套的流平铺开来。

方法签名如下:

<R> Stream<R> flatMap(Function<? super T, ? extends Stream<? extends R>> mapper);

示例用法如下:

List<List<Integer>> nestedList = Arrays.asList(Arrays.asList(1, 2, 3),Arrays.asList(4, 5, 6),Arrays.asList(7, 8, 9)
);nestedList.stream().flatMap(Collection::stream).forEach(System.out::println);

在上述示例中,我们有一个嵌套列表nestedList,其中包含三个子列表。我们首先将其转换为流,然后调用flatMap方法,传递一个方法引用Collection::stream作为映射函数。该方法引用将每个子列表转换为一个流,并将所有的流合并成一个单独的流。最终,我们得到了一个包含所有元素的扁平化流flattenedStream

执行flatMap转换操作后,流的元素变化如下:

image-20231103235818392

同时flatMap方法支持数据转换:

List<List<Integer>> nestedList = Arrays.asList(Arrays.asList(1, 2, 3),Arrays.asList(4, 5, 6),Arrays.asList(7, 8, 9)
);nestedList.stream().flatMap(ns-> ns.stream().map(n->"Number:"+n)).forEach(System.out::println);
distinct 去重

distinct() 返回一个包含流中不重复元素的新流。新流中的元素顺序与原始流中的元素顺序相同。

具体来说,distinct() 方法会基于元素的 equals() 方法判断元素是否重复。如果流中有多个元素与当前元素相等,则只保留其中的一个元素。其他重复元素将被过滤掉。在去重过程中,保留的是第一次出现的元素,后续重复出现的元素将被忽略。

方法签名如下:

Stream<T> distinct();

以下是一个示例,演示如何使用 distinct() 方法进行去重操作:

List<Integer> numbers = Arrays.asList(1, 2, 2, 3, 3, 4, 5);numbers.stream().distinct().forEach(System.out::println);

在上述示例中,我们创建了一个包含整数元素的列表 numbers,其中存在重复的元素。然后,使用 stream() 方法将其转换为流对象。接下来,我们调用 distinct() 方法,该方法会返回一个新的流,其中只包含不重复的元素。最后,使用 forEach() 终端操作遍历去重后的流,并打印每个元素。

使用 distinct() 方法后,流的元素变化如下:

image-20231104001527002

注:distinct() 方法会基于元素的 equals() 方法判断元素是否重复,因此必须保证元素的 equals() 方法正确实现,才能准确判断元素是否重复。

sorted 排序

通过调用 sorted() 方法,我们可以对流中的元素进行排序操作。并返回一个包含按自然顺序或指定比较器排序的元素的新流。

sorted() 方法有两种重载形式:

//默认排序规则
Stream<T> sorted();
//指定排序规则
Stream<T> sorted(Comparator<? super T> comparator);
  • 若调用时不传入任何参数,则会根据元素的自然顺序(即调用元素的 compareTo() 方法进行比较)完成排序。如果流中的元素不支持自然排序(即元素类型未实现 Comparable 接口或者实现了该接口但未正确实现 compareTo() 方法),则会抛出 ClassCastException 异常。
  • 若调用时传入一个比较器(Comparator)作为参数,则会使用指定的比较器对元素进行排序。

以下是两个示例,分别演示了使用自然顺序和比较器进行排序的情况:

  1. 使用自然顺序进行排序:

    List<Integer> numbers = Arrays.asList(5, 3, 2, 4, 1);numbers.stream().sorted().forEach(System.out::println);
    

    在上述示例中,我们创建了一个包含整数元素的列表 numbers。然后,使用 stream() 方法将其转换为流对象。接下来,我们调用 sorted() 方法,该方法会返回一个新的流,其中的元素按照自然顺序进行排序。

    最后,使用 forEach() 终端操作遍历排序后的流,并打印每个元素。

    经过 sorted() 方法后,流的元素变化如下:

    image-20231104110823136

  2. 使用比较器进行排序:

    List<Integer> numbers = Arrays.asList(5, 3, 2, 4, 1);numbers.stream().sorted(Comparator.reverseOrder()).forEach(System.out::println);
    

    在上述示例中,我们创建了一个包含整数元素的列表 numbers。然后,使用 stream() 方法将其转换为流对象。接下来,我们创建了一个比较器 reverseOrder,该比较器会按逆序对元素进行排序。

    最后,我们调用 sorted() 方法,并传入比较器作为参数,返回一个新的流,其中的元素按照指定的比较器进行排序。

    经过 sorted() 方法后,流的元素变化如下:

    image-20231104111320361

注:使用sorted() 方法对流中的元素进行排序时,元素类型必须实现 Comparable 接口,或者提供比较器来指定排序规则。

limit 限流

limit() 方法用于截取流中的前 n 个元素,并返回一个新的流。该方法的语法如下:

Stream<T> limit(long maxSize)

其中,maxSize 参数指定了要截取的元素个数。

注:如果输入的流中元素的数量不足 maxSize,则返回的新流中只包含所有元素。此外,如果 maxSize 小于等于 0,或者输入的流为空,则返回的新流也将为空。

以下是一个示例,演示了如何使用 limit() 方法对流进行截取:

List<Integer> numbers = Arrays.asList(5, 3, 2, 4, 1);numbers.stream().limit(3).forEach(System.out::println);

在上述示例中,我们创建了一个包含整数元素的列表 numbers。然后,使用 stream() 方法将其转换为流对象。接下来,我们调用 limit(3) 方法,截取流中的前三个元素。

最后,使用 forEach() 终端操作遍历截取后的流,并打印每个元素。

使用 limit() 方法后,流的元素变化如下:

image-20231104111834081

skip 跳过

skip() 方法用于跳过流中的前 n 个元素,并返回一个新的流。该方法的语法如下:

Stream<T> skip(long n)

其中,n 参数指定了要跳过的元素个数。

注:如果输入的流中元素的数量不足 n,则返回的新流将为空。此外,如果 n 小于等于 0,或者输入的流为空,则返回的新流将包含原始流中的所有元素。

以下是一个示例,演示了如何使用 skip() 方法跳过流中的元素:

List<Integer> numbers = Arrays.asList(5, 3, 2, 4, 1);numbers.stream().skip(3).forEach(System.out::println);

根据你提供的代码,创建了一个包含整数元素的列表 numbers。然后,使用 stream() 方法将其转换为流对象。接下来,我们调用 skip(3) 方法,跳过流中的前三个元素。

最后,使用 forEach() 终端操作遍历跳过后的流,并打印每个元素。

使用 skip() 方法后,流的元素变化如下:

image-20231104112715970

peek 操作

peek() 方法提供了一种在流元素处理过程中插入非终端操作的机制,即在每个元素的处理过程中执行某些操作,例如调试、日志记录、统计等。

该方法的语法如下:

Stream<T> peek(Consumer<? super T> action)

其中,action 参数是一个 Consumer 函数式接口,用于定义要在流元素处理过程中执行的操作。对于每个元素,peek() 方法都会调用 action 函数,并传递该元素作为参数。

以下是一个示例,演示了如何使用 peek() 方法:

List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5);numbers.stream().filter(n -> n % 2 == 0).peek(n -> System.out.println("Found even number: " + n)).map(n -> n * 2).forEach(System.out::println);

在上述示例中,我们创建了一个包含整数元素的列表 numbers。然后,我们使用 stream() 方法将其转换为流对象。接下来,我们使用 filter() 方法过滤出所有偶数,并使用 peek() 方法插入一条打印语句,以便在每个偶数被消耗时显示一条消息。

然后,我们使用 map() 方法对每个偶数进行乘法运算,并最终使用 forEach() 终端操作打印每个结果。

控制台打印结果:

Found even number: 2
4
Found even number: 4
8

使用 peek() 方法时,流的元素变化如下:

image-20231104113322402

终结操作

终结操作(Terminal Operation)是 Stream 流的最后一个操作,用于触发流的处理并产生最终的结果或副作用。执行终结操作后,流将会被关闭,因此在调用终结操作之后,流将不再可用。

forEach 遍历

forEach() 是 Stream 流的一个终端操作方法,用于对流中的每个元素执行指定的操作。它接受一个 Consumer 函数式接口作为参数,并将该操作应用于流中的每个元素。

forEach() 方法没有返回值,因此它只用于执行一些针对每个元素的操作,并不能产生新的流或结果。

以下是 forEach() 方法的语法:

void forEach(Consumer<? super T> action)

其中,action表示要对每个元素执行的操作,它是一个接受一个参数并且没有返回值的函数式接口。在Lambda表达式中,可以使用该参数执行自定义的操作。

以下是一个示例,演示了如何使用 forEach() 方法对流中的每个元素执行操作:

List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5);numbers.stream().forEach(System.out::println);

首先,我们创建了一个包含整数元素的列表 numbers。接下来,我们通过调用 stream() 方法将该列表转换为一个流对象。然后,我们使用 forEach() 方法对每个元素执行一条打印语句。

在打印语句中,我们使用了方法引用(Method Reference)的方式,即 System.out::println,它代表了一个输出流操作,将流中的每个元素输出到控制台上。也可以使用 lambda 表达式的方式,即 (x) -> System.out.println(x)

运行上述代码,控制台输出结果如下:

1
2
3
4
5
forEachOrdered 有序遍历

forEachOrdered() 方法与 forEach() 方法相似,用于对流中的每个元素执行指定的操作。但与 forEach() 不同的是,forEachOrdered() 方法能够保证操作按照流中元素的顺序依次执行。

以下是 forEachOrdered() 方法的语法:

void forEachOrdered(Consumer<? super T> action)

其中,action 参数是一个 Consumer 函数式接口,用于定义要在每个元素上执行的操作。对于流中的每个元素,forEachOrdered() 方法都会调用 action 函数,并将该元素作为参数传递给它。这些操作将按照流中元素的顺序依次执行,而不是在并行流中产生竞争条件。

以下是一个示例,演示了如何使用 forEachOrdered() 方法对流中的每个元素执行操作:

List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5);numbers.parallelStream().forEachOrdered(System.out::println);

在上述示例中,我们创建了一个包含整数元素的列表 numbers。然后,我们使用 parallelStream() 方法将该列表转换为一个并行流对象。并行流允许并行处理流中的元素,以提高处理速度。

接下来,我们使用 forEachOrdered() 方法将并行流中的每个元素输出到控制台。

控制台输出结果如下:

1
2
3
4
5

由于我们在这里使用了并行流,而并行流的处理顺序可能会受到多线程的调度和执行时间的影响,因此如果使用 forEach() 方法,则打印顺序可能是随机的。但是,由于我们使用了 forEachOrdered() 方法,所以不会受到并行处理的影响,最终的输出顺序将与原始列表中的顺序一致。

parallelStream() 并行流中的元素变化如下:

image-20231104114959597

count 统计数量

count 用于统计 Stream 流中元素的个数。该方法返回一个 long 类型的值,表示流中元素的数量。

count的语法如下:

long count()

它返回一个long类型的值,表示流中元素的个数。

以下是一个示例,演示了如何使用 count() 方法计算一个整数流中的元素数量:

List<String> fruits = Arrays.asList("apple", "banana", "orange");// 统计水果的个数
long count = fruits.stream().count();System.out.println("水果的个数为:" + count);

首先我们创建了一个 Integer 类型的列表 numbers。然后,通过调用 stream() 方法将列表转换为顺序流。接着,使用 count() 方法来计算顺序流中的元素数量,并将结果赋值给变量 count

最后,使用 System.out.println() 方法将计算出的元素数量输出到控制台。

控制台输出结果如下:

5

注:count() 方法只能用于非并行流或无限流。如果在并行流或无限流中调用该方法,则可能会导致程序挂起或陷入死循环等不良情况。

min 最小值

min() 用于获取流中的最小值。它可以用于处理基本类型和对象类型的流。以下是 min() 方法的语法:

Optional<T> min(Comparator<? super T> comparator)

它接收一个 Comparator 对象作为参数,用于确定最小值的比较方式。返回一个 Optional 对象,表示流中的最小值(如果存在)。

下面是一个示例代码,演示了如何使用 min() 方法找到整数流中的最小值:

List<Integer> numbers = Arrays.asList(5, 2, 8, 1, 9);// 找到最小值
Optional<Integer> min = numbers.stream().min(Integer::compareTo);System.out.println("最小值为:" + min.get());

上述代码中,我们将一个包含五个整数的 List 转换成了 Stream 流,并使用 min 方法找到流中的最小值。通过传入 Integer 类的 compareTo 方法作为比较器,可以实现对整数的比较。最后,我们将结果输出到控制台。

经过 min() 方法后流中的元素变化如下:

image-20231104121503272

max 最大值

在 Java 中,max() 是一个流的终端操作,用于获取流中的最大值。它可以用于处理基本类型和对象类型的流。

以下是 max() 方法的语法:

Optional<T> max(Comparator<? super T> comparator)

它接收一个 Comparator 对象作为参数,用于确定最大值的比较方式。返回一个 Optional 对象,表示流中的最大值(如果存在)。

下面是一个示例代码,演示了如何使用 max() 方法找到整数流中的最大值:

List<Integer> numbers = Arrays.asList(5, 2, 8, 1, 9);// 找到最大值
Optional<Integer> max = numbers.stream().max(Integer::compareTo);System.out.println("最大值为:" + max.get());

上述代码中,我们将一个包含五个整数的 List 转换成了 Stream 流,并使用 max 方法找到流中的最大值。通过传入 Integer 类的 compareTo 方法作为比较器,可以实现对整数的比较。最后,我们将结果输出到控制台。

经过 min() 方法后流中的元素变化如下:

image-20231104121951037

reduce 聚合

reduce() 用于将流中的元素进行聚合操作,生成一个最终的结果。它可以用于处理基本类型和对象类型的流。

以下是 reduce() 方法的三种语法:

  • 单个参数:

    Optional<T> reduce(BinaryOperator<T> accumulator)
    

    参数含义如下:

    • accumulator 是一个函数接口 BinaryOperator<T> 的实例,定义了一个二元操作符,用于将流中的元素逐个进行操作。

    使用这种形式的 reduce() 方法时,它会将流中的元素依次与累加器进行操作,最终将所有元素聚合成一个结果。

    返回值类型是 Optional<T>,因为如果流为空,没有元素可以进行聚合操作,此时返回的是一个空的 Optional 对象。

    下面是一个示例代码,演示了如何使用带有一个参数的 reduce() 方法对整数流进行求和操作:

    List<Integer> numbers = Arrays.asList(5, 2, 8, 1, 9);Optional<Integer> reduce = numbers.stream().reduce((a, b) -> a + b);System.out.println("Sum:" + reduce.get());
    

    在上述示例中,我们首先创建了一个整数流 numbers。然后,我们调用 reduce() 方法来对流中的元素进行求和操作。二元操作符使用 lambda 表达式 (a, b) -> a + b 进行相加操作。

    最后,打印求和结果:

    Sum:25
    

    注:reduce() 方法默认将流中的第一个元素作为初始化值,依次与后面的元素进行累加器操作。

  • 两个参数:

    T reduce(T identity, BinaryOperator<T> accumulator)
    

    参数含义如下:

    • identity 是初始值,用于处理空流的情况。
    • accumulator 是一个函数接口 BinaryOperator<T> 的实例,定义了一个二元操作符,用于将流中的元素逐个与累加器进行操作。

    使用这种形式的 reduce() 方法时,如果流中有元素,则将第一个参数作为初始值,然后依次将流中的元素与初始值进行操作。如果流为空,则直接返回初始值。

    下面是一个示例代码,演示了如何使用带有两个参数的 reduce() 方法对整数流进行求和操作:

    List<Integer> numbers = Arrays.asList(5, 2, 8, 1, 9);Integer reduce = numbers.stream().reduce(1, Integer::sum);System.out.println("Sum:" + reduce);
    

    在上述示例中,我们首先创建了一个整数流 numbers。然后,我们调用 reduce() 方法来对流中的元素进行求和操作。初始值设置为 1,元素进行相加操作。

    最后,我们将求和结果输出到控制台:

    Sum:26
    
  • 三个参数:

    <U> U reduce(U identity, BiFunction<U, ? super T, U> accumulator, BinaryOperator<U> combiner)
    

    每个参数含义如下:

    • identity 是初始值,用于处理空流的情况。
    • accumulator 是一个函数接口 BiFunction<U, ? super T, U> 的实例,定义了一个二元操作符,用于将流中的元素逐个与累加器进行操作。
    • combiner 是一个函数接口 BinaryOperator<U> 的实例,用于在并行流的情况下,将多个部分结果进行合并

    在处理并行流时,reduce() 方法会将流分成多个部分,并发地执行累加操作。然后,使用 combiner 函数将各个部分的结果进行合并,最终生成一个最终的结果。

    下面是一个示例代码,演示了如何使用带有三个参数的 reduce() 方法对整数流进行求和操作:

    List<Integer> numbers = Arrays.asList(5, 2, 8, 1, 9);Integer reduce = numbers.parallelStream().reduce(0, (a, b) -> a + b, Integer::sum);System.out.println("Sum:" + reduce);
    

    在上述示例中,我们首先创建了一个整数流 numbers。然后,我们调用 reduce() 方法来对流中的元素进行求和操作。初始值设置为 0,二元操作符使用 lambda 表达式 (a, b) -> a + b 进行相加操作。combiner 函数使用了方法引用 Integer::sum,用于在并行流的情况下合并部分结果。

    最后,我们将求和结果输出到控制台:

    Sum:25
    

    reduce() 方法后流中的元素变化如下:

    image-20231104145241256

collect 收集

collect() 方法是用于将流中的元素收集到集合或者其他数据结构中的操作。它可以将流中的元素进行转换、分组、过滤等操作,并将结果存储到指定的集合中。

collect() 方法使用 Collector 对象来定义收集操作的行为。Collector 接口提供了一系列静态方法,可以创建常见的收集器实例,如 toList()toSet()toMap() 等。

以下是 collect() 方法的语法:

<R, A> R collect(Collector<? super T, A, R> collector)

这里的参数含义如下:

  • collector 是一个 Collector 对象,用于定义收集操作的行为。

返回值类型是根据收集器的定义而确定的。

下面是一些示例代码,展示了如何使用 collect() 方法进行常见的收集操作:

  1. 将流中的元素收集到一个列表中:

    Stream<Integer> numbers = Stream.of(1, 2, 3, 4, 5);List<Integer> numberList = numbers.collect(Collectors.toList());System.out.println("Number List: " + numberList);
    
  2. 将流中的元素收集到一个集合中:

    Stream<Integer> numbers = Stream.of(1, 2, 3, 4, 5);Set<Integer> numberSet = numbers.collect(Collectors.toSet());System.out.println("Number Set: " + numberSet);
    
  3. 将流中的元素收集到一个映射表中:

    Stream<String> names = Stream.of("Alice", "Bob", "Charlie");Map<String, Integer> nameLengthMap = names.collect(Collectors.toMap(name -> name,name -> name.length()
    ));System.out.println("Name Length Map: " + nameLengthMap);
    
anyMatch 任意匹配

anyMatch() 方法是用于检查流中是否存在满足指定条件的元素。它返回一个boolean值,表示流中是否存在匹配的元素。

以下是anyMatch()方法的语法:

boolean anyMatch(Predicate<? super T> predicate)

参数含义如下:

  • predicate 是一个Predicate函数接口的实例,用于定义匹配条件。

返回值是一个boolean值,如果流中至少有一个元素满足predicate定义的条件,则返回true,否则返回false

下面是一个示例代码,演示了如何使用anyMatch()方法来检查整数流中是否存在大于10的元素:

Stream<Integer> numbers = Stream.of(5, 8, 12, 3, 9);boolean hasNumberGreaterThanTen = numbers.anyMatch(number -> number > 10);System.out.println("Has Number Greater Than Ten: " + hasNumberGreaterThanTen);

在上述示例中,我们创建了一个整数流numbers。然后调用anyMatch()方法检查是否存在大于10的元素。

allMatch 全匹配

allMatch() 方法用于检查流中的所有元素是否都满足指定的条件。它返回一个布尔值,表示流中的所有元素是否都满足条件。

以下是 allMatch() 方法的语法:

boolean allMatch(Predicate<? super T> predicate)

参数含义如下:

  • predicate 是一个 Predicate 函数接口的实例,用于定义匹配条件。

返回值是一个布尔值,如果流中的所有元素都满足 predicate 定义的条件,则返回 true,否则返回 false

下面是一个示例代码,演示了如何使用 allMatch() 方法来检查整数流中的所有元素是否都为偶数:

Stream<Integer> numbers = Stream.of(2, 4, 6, 8, 10);boolean allEven = numbers.allMatch(number -> number % 2 == 0);System.out.println("All Even: " + allEven);

在上述示例中,创建了一个整数流 numbers,然后调用 allMatch() 方法检查流中的所有元素是否都为偶数。

noneMatch 全不匹配

noneMatch()方法用于检查流中是否没有任何元素满足指定的条件。它返回一个boolean值,表示流中是否不存在满足条件的元素。

以下是noneMatch()方法的语法:

boolean noneMatch(Predicate<? super T> predicate)

这里的参数含义如下:

  • predicate 是一个Predicate函数接口的实例,用于定义匹配条件。

返回值是一个boolean值,如果流中没有任何元素满足predicate定义的条件,则返回true,否则返回false。

下面是一个示例代码,演示了如何使用noneMatch()方法来检查整数流中是否没有负数元素:

Stream<Integer> numbers = Stream.of(1, 2, 3, 4, 5);boolean noNegativeNumbers = numbers.noneMatch(number -> number < 0);System.out.println("No Negative Numbers: " + noNegativeNumbers);

在上述示例中,创建了一个整数流numbers,调用noneMatch()方法检查流中是否没有负数元素。

findFirst 查找第一个

findFirst() 方法用于返回流中的第一个元素(按照流的遍历顺序)。它返回一个 Optional 对象,可以用于处理可能不存在的情况。

以下是 findFirst() 方法的语法:

Optional<T> findFirst()

返回值类型是 Optional<T>,其中 T 是流中元素的类型。如果流为空,则返回一个空的 Optional 对象;否则,返回一个包含第一个元素的 Optional 对象。

下面是一个示例代码,演示了如何使用 findFirst() 方法来获取整数流中的第一个元素:

Stream<Integer> numbers = Stream.of(1, 2, 3, 4, 5);Optional<Integer> firstNumber = numbers.findFirst();if (firstNumber.isPresent()) {System.out.println("First Number: " + firstNumber.get());
} else {System.out.println("Stream is empty");
}

在上述示例中,创建了一个整数流 numbers,调用 findFirst() 方法,返回一个 Optional 对象,表示流中的第一个元素。

findAny

findAny() 方法用于返回流中的任意一个元素。它返回一个 Optional 对象,可以用于处理可能不存在的情况。

以下是 findAny() 方法的语法:

Optional<T> findAny()

返回值类型是 Optional<T>,其中 T 是流中元素的类型。如果流为空,则返回一个空的 Optional 对象;否则,返回一个包含任意一个元素的 Optional 对象。

findAny() 方法与 findFirst() 方法类似,但不保证返回的是流中的第一个元素,而是返回任意一个元素。这在并行流中尤为有用,因为它可以并行处理流的不同部分,然后返回其中的任意一个元素。

下面是一个示例代码,演示了如何使用 findAny() 方法来获取整数流中的任意一个元素:

Stream<Integer> numbers = Stream.of(1, 2, 3, 4, 5);Optional<Integer> anyNumber = numbers.findAny();if (anyNumber.isPresent()) {System.out.println("Any Number: " + anyNumber.get());
} else {System.out.println("Stream is empty");
}

上述示例中,创建了一个整数流 numbers,调用 findAny() 方法,返回一个 Optional 对象,表示流中的任意一个元素。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/130280.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

python 成绩统计,输出及格率和优

题目描述&#xff1a; 小蓝给学生们组织了一场考试&#xff0c;卷面总分为100分&#xff0c;每个学生的得分都是一个0到100的整数。 如果得分至少是60分&#xff0c;则称为及格。如果得分至少为85分&#xff0c;则称为优秀。 请计算及格率和优秀率&#xff0c;用百分数表示&am…

虚拟机保护工具:Zerto Virtual Replication 10.0 U1 Crack

Zerto虚拟复制是为需要保护虚拟机和应用程序的企业设计的产品。通过通过连接到广域网或云到远程站点的复制来保护虚拟机。Zerto VR 2.0还可以与vCloud Director一起将虚拟机或虚拟机组复制到云端&#xff08;或从云端&#xff09;。 事实上&#xff0c;Zerto与33家云提供商合作…

Unity在Project右键点击物体之后获取到点击物体的名称

Unity在Project右键点击物体之后获取到点击物体的名称 描述&#xff1a; 在Unity的Project右键点击物体之后选择对应的菜单选项点击之后打印出物体的名称 注意事项 如果获取到文件或者预制体需要传递objcet类型&#xff0c;然后使用 GameObject.Instantiate((GameObject)se…

WiFi模块在智能家居中的应用与优化

智能家居技术的迅速发展已经改变了我们对家庭的定义。WiFi模块作为智能设备连接的核心&#xff0c;扮演着连接和控制智能家居生态系统的关键角色。本文将深入研究WiFi模块在智能家居中的应用&#xff0c;同时探讨如何通过优化来提升其性能和用户体验。 1. 智能家居中WiFi模块的…

第二十六章 BEV感知系列三(车道线感知)

前言 近期参与到了手写AI的车道线检测的学习中去&#xff0c;以此系列笔记记录学习与思考的全过程。车道线检测系列会持续更新&#xff0c;力求完整精炼&#xff0c;引人启示。所需前期知识&#xff0c;可以结合手写AI进行系统的学习。 BEV感知系列是对论文Delving into the De…

Jenkins项目部署

使用jenkins部署项目 简易版使用jenkins部署项目 将war包部署到tomcat中 将已有的war包部署到tomcat中(jenkins与tomcat在同一台主机) 点击Jenkins主页的新建任务 输入任务名称 选择构建一个自由风格的软件项目后点击确定 在构建内添加构建步骤&#xff0c;选择执行shell 输入…

回归预测 | Matlab实现MPA-BP海洋捕食者算法优化BP神经网络多变量回归预测(多指标、多图)

回归预测 | Matlab实现MPA-BP海洋捕食者算法优化BP神经网络多变量回归预测&#xff08;多指标、多图&#xff09; 目录 回归预测 | Matlab实现MPA-BP海洋捕食者算法优化BP神经网络多变量回归预测&#xff08;多指标、多图&#xff09;效果一览基本介绍程序设计参考资料 效果一览…

数字IC后端实现 |TSMC 12nm 与TSMC 28nm Metal Stack的区别

下图为咱们社区IC后端训练营项目用到的Metal Stack。 芯片Tapeout Review CheckList 数字IC后端零基础入门Innovus学习教程 1P代表一层poly&#xff0c;10M代表有10层metal&#xff0c;M5x表示M2-M6为一倍最小线宽宽度的金属层&#xff0c;2y表示M7-M8为二倍最小线宽宽度的金…

npm的使用

package.json 快速生成package.json npm init -y “version”: “~1.1.0” 格式为&#xff1a;「主版本号. 次版本号. 修订号」。 修改主版本号是做了大的功能性的改动 修改次版本号是新增了新功能 修改修订号就是修复了一些bug dependencies "dependencies": {&…

redis rdb aof

appendonly yes # appendfsync always appendfsync everysec # appendfsync no E:\Document_Redis_Windows\redis-2.4.5-win32-win64\64bit appendonly.aof

Jetson NX FFmpeg硬件编解码实现

最近在用Jetson Xavier NX板子做视频处理&#xff0c;但是CPU进行视频编解码&#xff0c;效率比较地下。 于是便考虑用硬解码来对视频进行处理。 通过jtop查看&#xff0c;发现板子是支持 NVENC硬件编解码的。 1、下载源码 因为需要对ffmpeg进行打补丁修改&#xff0c;因此需…

Springboot JSP项目如何以war、jar方式运行

文章目录 一&#xff0c;序二&#xff0c;样例代码1&#xff0c;代码结构2&#xff0c;完整代码备份 三&#xff0c;准备工作1. pom.xml 引入组件2. application.yml 指定jsp配置 四&#xff0c;war方式运行1. 修改pom.xml文件2. mvn执行打包 五&#xff0c;jar方式运行1. 修改…

PPT制作指南

诸神缄默不语-个人CSDN博文目录 文章目录 1. SOP2. PPT的目标3. PPT素材4. 内容框架5. 设计细节本文撰写过程中使用到的参考资料 1. SOP 分析目标→收集素材→明确框架→视觉呈现 2. PPT的目标 演讲型PPT&#xff1a;字少图多 阅读型PPT&#xff1a;需要文字解释 分析维度&…

【深度学习基础】Pytorch框架CV开发(2)实战篇

&#x1f4e2;&#xff1a;如果你也对机器人、人工智能感兴趣&#xff0c;看来我们志同道合✨ &#x1f4e2;&#xff1a;不妨浏览一下我的博客主页【https://blog.csdn.net/weixin_51244852】 &#x1f4e2;&#xff1a;文章若有幸对你有帮助&#xff0c;可点赞 &#x1f44d;…

springboot常见网络相关错误及原因解析

在基于spring-boot开发过程尤其是上线后&#xff0c;经常出现网络相关的错误&#xff0c;令人难以琢磨和下手&#xff0c;所以就spring-boot使用过程中可能碰到的网络相关问题进行分析&#xff0c;结合网络转包、日志报错和前端输出&#xff0c;针对网络连接超时、连接被拒绝、…

默认路由配置

默认路由&#xff1a; 在末节路由器上使用。&#xff08;末节路由器是前往其他网络只有一条路可以走的路由器&#xff09; 默认路由被称为最后的关卡&#xff0c;也就是静态路由不可用并且动态路由也不可用&#xff0c;最后就会选择默认路由。有时在末节路由器上写静态路由时…

自动驾驶算法(五):Informed RRT*算法讲解与代码实现(基于采样的路径规划) 与比较

目录 1 RRT*与Informed RRT* 2 Informed RRT*代码解析 3 完整代码 4 算法比较 1 RRT*与Informed RRT* 上篇博客我们介绍了RRT*算法&#xff1a;我们在找到一个路径以后我们还会反复的搜索。 Informed RRT*算法提出的动机(motivation)是能否增加渐近最优的速度呢&#xff1f;…

【数据结构】树家族

目录 树的相关术语树家族二叉树霍夫曼树二叉查找树 BST平衡二叉树 AVL红黑树伸展树替罪羊树 B树B树B* 树 当谈到数据结构中的树时&#xff0c;我们通常指的是一种分层的数据结构&#xff0c;它由节点&#xff08;nodes&#xff09;组成&#xff0c;这些节点之间以边&#xff08…

基于级联延迟信号消除的锁相环(CDSC_PLL)技术MATLAB仿真

微❤关注“电气仔推送”获得资料&#xff08;专享优惠&#xff09; 基于级联型延迟信号消除&#xff08;CDSC&#xff09;的锁相环技术&#xff08;CDSC-PLL&#xff09;&#xff0c;该锁相环克服了传统dq 锁相环在电网电压畸变或不对称时存在较大稳态误差的缺点。CDSC-PLL是在…

Ansible中的任务执行控制

循环 简单循环 {{item}} 迭代变量名称 loop: - value1 - value2 - ... //赋值列表{{item}} //迭代变量名称循环散列或字典列表 - name: create filehosts: host1tasks:- name: file moudleservice:name: "{{ item.name }}"state: "{{…