基于设深度学习的人脸性别年龄识别系统 计算机竞赛

文章目录

  • 0 前言
  • 1 课题描述
  • 2 实现效果
  • 3 算法实现原理
    • 3.1 数据集
    • 3.2 深度学习识别算法
    • 3.3 特征提取主干网络
    • 3.4 总体实现流程
  • 4 具体实现
    • 4.1 预训练数据格式
    • 4.2 部分实现代码
  • 5 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

基于深度学习机器视觉的人脸性别年龄识别系统

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate


1 课题描述

随着大数据与人工智能逐渐走入人们的生活,计算机视觉应用越发广泛。如医疗影像识别、无人驾驶车载视觉、通用物体识别、自然场景下的文本识别等,根据不同的应用场景,人脸研究方向可以分为人脸检测、身份识别、性别识别、年龄预测、种族识别、表情识别等。近年来,人脸身份识别技术发展迅猛,在生活应用中取得了较好的效果,也逐渐趋于成熟,而年龄识别与性别预测,仍然是生物特征识别研究领域中一项具有挑战性的课题。

课题意义

相比人脸性别属性而言,人脸年龄属性的研究更富有挑战性。主要有两点原因,首先每个人的年龄会随着身体健康状况、皮肤保养情况而表现得有所不同,即便是在同一年,表现年龄会随着个人状态的不同而改变,人类识别尚且具有较高难度。其次,可用的人脸年龄估计数据集比较少,不同年龄的数据标签收集不易,现有大多数的年龄数据集都是在不同的复杂环境下的照片、人脸图片存在光照变化较复杂、部分遮挡、图像模糊、姿态旋转角度较大等一系列问题,对人脸模型的鲁棒性产生了较大的影响。

2 实现效果

这里废话不多说,先放上大家最关心的实现效果:

输入图片:
在这里插入图片描述

识别结果:

在这里插入图片描述

或者实时检测
在这里插入图片描述
在这里插入图片描述

3 算法实现原理

3.1 数据集

学长收集的数据集:
该人脸数据库的图片来源于互联网的爬取,而非研究机构整理,一共含有13000多张人脸图像,在这个数据集中大约有1860张图片是成对出现的,即同一个人的2张不同照片,有助于人脸识别算法的研究,图像标签中标有人的身份信息,人脸坐标,关键点信息,可用于人脸检测和人脸识别的研究,此数据集是对人脸算法效果验证的权威数据集.

在这里插入图片描述
该数据集包含的人脸范围比较全面,欧亚人种都有。

3.2 深度学习识别算法

卷积神经网络是常见的深度学习架构,而在CNN出现之前,图像需要处理的数据量过大,导致成本很高,效率很低,图像在数字化的过程中很难保留原有的特征,导致图像处理的准确率不高。CNN的出现使得提取特征的能力变得更强,为更多优秀网络的研究提供了有力的支撑。CNN的核心思想是利用神经网络模拟人脑视觉神经系统,构造多个神经元并建立彼此之间的联系。不同的神经元进行分工,浅层神经元处理低纬度图像特征,深层神经元处理图像高级特征、语义信息等,CNN的网络结构主要由卷积层、BN层、激活层、池化层、全连接层、损失函数层构成,多个层协同工作实现了特征提取的功能,并通过特有的网络结构降低参数的数量级,防止过拟合,最终得到输出结果.

CNN传承了多层感知机的思想,并受到了生物神经科学的启发,通过卷积的运算模拟人类视觉皮层的“感受野”。不同于传统的前馈神经网络,卷积运算对图像的区域值进行加权求和,最终以神经元的形式进行输出。前馈神经网络对每一个输入的信号进行加权求和:

  • (a)图是前馈神经网络的连接方式
  • (b)图是CNN的连接方式。

在这里插入图片描述
cnn框架如下:
在这里插入图片描述

3.3 特征提取主干网络

在深度学习算法研究中,通用主干特征提取网络结合特定任务网络已经成为一种标准的设计模式。特征提取对于分类、识别、分割等任务都是至关重要的部分。下面介绍本文研究中用到的主干神经网络。

ResNet网络
ResNet是ILSVRC-2015的图像分类任务冠军,也是CVPR2016的最佳论文,目前应用十分广泛,ResNet的重要性在于将网络的训练深度延伸到了数百层,而且取得了非常好的效果。在ResNet出现之前,网络结构一般在20层左右,对于一般情况,网络结构越深,模型效果就会越好,但是研究人员发现加深网络反而会使结果变差。

在这里插入图片描述

人脸特征提取我这里选用ResNet,网络结构如下:
在这里插入图片描述

3.4 总体实现流程

在这里插入图片描述

4 具体实现

4.1 预训练数据格式

在这里插入图片描述

在这里插入图片描述

4.2 部分实现代码

训练部分代码:

from __future__ import absolute_importfrom __future__ import divisionfrom __future__ import print_functionfrom six.moves import xrangefrom datetime import datetimeimport timeimport osimport numpy as npimport tensorflow as tffrom data import distorted_inputsfrom model import select_modelimport jsonimport reLAMBDA = 0.01MOM = 0.9tf.app.flags.DEFINE_string('pre_checkpoint_path', '',"""If specified, restore this pretrained model """"""before beginning any training.""")tf.app.flags.DEFINE_string('train_dir', '/home/dpressel/dev/work/AgeGenderDeepLearning/Folds/tf/test_fold_is_0','Training directory')tf.app.flags.DEFINE_boolean('log_device_placement', False,"""Whether to log device placement.""")tf.app.flags.DEFINE_integer('num_preprocess_threads', 4,'Number of preprocessing threads')tf.app.flags.DEFINE_string('optim', 'Momentum','Optimizer')tf.app.flags.DEFINE_integer('image_size', 227,'Image size')tf.app.flags.DEFINE_float('eta', 0.01,'Learning rate')tf.app.flags.DEFINE_float('pdrop', 0.,'Dropout probability')tf.app.flags.DEFINE_integer('max_steps', 40000,'Number of iterations')tf.app.flags.DEFINE_integer('steps_per_decay', 10000,'Number of steps before learning rate decay')tf.app.flags.DEFINE_float('eta_decay_rate', 0.1,'Learning rate decay')tf.app.flags.DEFINE_integer('epochs', -1,'Number of epochs')tf.app.flags.DEFINE_integer('batch_size', 128,'Batch size')tf.app.flags.DEFINE_string('checkpoint', 'checkpoint','Checkpoint name')tf.app.flags.DEFINE_string('model_type', 'default','Type of convnet')tf.app.flags.DEFINE_string('pre_model','',#'./inception_v3.ckpt','checkpoint file')FLAGS = tf.app.flags.FLAGS# Every 5k steps cut learning rate in halfdef exponential_staircase_decay(at_step=10000, decay_rate=0.1):print('decay [%f] every [%d] steps' % (decay_rate, at_step))def _decay(lr, global_step):return tf.train.exponential_decay(lr, global_step,at_step, decay_rate, staircase=True)return _decaydef optimizer(optim, eta, loss_fn, at_step, decay_rate):global_step = tf.Variable(0, trainable=False)optz = optimif optim == 'Adadelta':optz = lambda lr: tf.train.AdadeltaOptimizer(lr, 0.95, 1e-6)lr_decay_fn = Noneelif optim == 'Momentum':optz = lambda lr: tf.train.MomentumOptimizer(lr, MOM)lr_decay_fn = exponential_staircase_decay(at_step, decay_rate)return tf.contrib.layers.optimize_loss(loss_fn, global_step, eta, optz, clip_gradients=4., learning_rate_decay_fn=lr_decay_fn)def loss(logits, labels):labels = tf.cast(labels, tf.int32)cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=labels, name='cross_entropy_per_example')cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')tf.add_to_collection('losses', cross_entropy_mean)losses = tf.get_collection('losses')regularization_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)total_loss = cross_entropy_mean + LAMBDA * sum(regularization_losses)tf.summary.scalar('tl (raw)', total_loss)#total_loss = tf.add_n(losses + regularization_losses, name='total_loss')loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')loss_averages_op = loss_averages.apply(losses + [total_loss])for l in losses + [total_loss]:tf.summary.scalar(l.op.name + ' (raw)', l)tf.summary.scalar(l.op.name, loss_averages.average(l))with tf.control_dependencies([loss_averages_op]):total_loss = tf.identity(total_loss)return total_lossdef main(argv=None):with tf.Graph().as_default():model_fn = select_model(FLAGS.model_type)# Open the metadata file and figure out nlabels, and size of epochinput_file = os.path.join(FLAGS.train_dir, 'md.json')print(input_file)with open(input_file, 'r') as f:md = json.load(f)images, labels, _ = distorted_inputs(FLAGS.train_dir, FLAGS.batch_size, FLAGS.image_size, FLAGS.num_preprocess_threads)logits = model_fn(md['nlabels'], images, 1-FLAGS.pdrop, True)total_loss = loss(logits, labels)train_op = optimizer(FLAGS.optim, FLAGS.eta, total_loss, FLAGS.steps_per_decay, FLAGS.eta_decay_rate)saver = tf.train.Saver(tf.global_variables())summary_op = tf.summary.merge_all()sess = tf.Session(config=tf.ConfigProto(log_device_placement=FLAGS.log_device_placement))tf.global_variables_initializer().run(session=sess)# This is total hackland, it only works to fine-tune iv3if FLAGS.pre_model:inception_variables = tf.get_collection(tf.GraphKeys.VARIABLES, scope="InceptionV3")restorer = tf.train.Saver(inception_variables)restorer.restore(sess, FLAGS.pre_model)if FLAGS.pre_checkpoint_path:if tf.gfile.Exists(FLAGS.pre_checkpoint_path) is True:print('Trying to restore checkpoint from %s' % FLAGS.pre_checkpoint_path)restorer = tf.train.Saver()tf.train.latest_checkpoint(FLAGS.pre_checkpoint_path)print('%s: Pre-trained model restored from %s' %(datetime.now(), FLAGS.pre_checkpoint_path))run_dir = '%s/run-%d' % (FLAGS.train_dir, os.getpid())checkpoint_path = '%s/%s' % (run_dir, FLAGS.checkpoint)if tf.gfile.Exists(run_dir) is False:print('Creating %s' % run_dir)tf.gfile.MakeDirs(run_dir)tf.train.write_graph(sess.graph_def, run_dir, 'model.pb', as_text=True)tf.train.start_queue_runners(sess=sess)summary_writer = tf.summary.FileWriter(run_dir, sess.graph)steps_per_train_epoch = int(md['train_counts'] / FLAGS.batch_size)num_steps = FLAGS.max_steps if FLAGS.epochs < 1 else FLAGS.epochs * steps_per_train_epochprint('Requested number of steps [%d]' % num_steps)for step in xrange(num_steps):start_time = time.time()_, loss_value = sess.run([train_op, total_loss])duration = time.time() - start_timeassert not np.isnan(loss_value), 'Model diverged with loss = NaN'if step % 10 == 0:num_examples_per_step = FLAGS.batch_sizeexamples_per_sec = num_examples_per_step / durationsec_per_batch = float(duration)format_str = ('%s: step %d, loss = %.3f (%.1f examples/sec; %.3f ' 'sec/batch)')print(format_str % (datetime.now(), step, loss_value,examples_per_sec, sec_per_batch))# Loss only actually evaluated every 100 steps?if step % 100 == 0:summary_str = sess.run(summary_op)summary_writer.add_summary(summary_str, step)if step % 1000 == 0 or (step + 1) == num_steps:saver.save(sess, checkpoint_path, global_step=step)if __name__ == '__main__':tf.app.run()

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/129938.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

软件测试/测试开发丨ChatGPT能否成为PPT最佳伴侣

点此获取更多相关资料 简介 PPT 已经渗透到我们的日常工作中&#xff0c;无论是工作汇报、商务报告、学术演讲、培训材料都常常要求编写一个正式的 PPT&#xff0c;协助完成一次汇报或一次演讲。PPT相比于传统文本的就是有布局、图片、动画效果等&#xff0c;可以给到观众更好…

【leetcode】26. 删除有序数组中的重复项(图解)

目录 1. 思路&#xff08;图解&#xff09;2. 代码 题目链接&#xff1a; leetcode 26. 删除有序数组中的重复项 题目描述&#xff1a; 注意返回的是去重后的数组长度&#xff0c;但是输出的是去重后的数组元素。 1. 思路&#xff08;图解&#xff09; 思路&#xff1a;快慢…

在maven官网中如何下载低版本的maven

链接&#xff1a;https://archive.apache.org/dist/maven/maven-3/

快速了解相似检索方法

一、相似检索方法总体分析 相似检索方法是一种用于从大量数据中找到与查询数据相似的数据项的技术。这种方法通常用于信息检索、推荐系统、图像处理、自然语言处理等领域。相似检索主要方法可以总体分为以下几类&#xff1a; 基于距离度量的方法&#xff1a; 余弦相似度&…

Postman接口测试工具,提高SpringBoot开发效率

文章目录 &#x1f33a;工具—postman⭐作用&#x1f3f3;️‍&#x1f308;安装&#x1f388;创建工作空间 &#x1f384;简单参数⭐原始方式&#x1f388;我们建立springboot项目&#xff0c;输入下面的代码&#x1f388;运行 ⭐SpringBoot方式 &#x1f384;实体参数&#x…

正点原子嵌入式linux驱动开发——Linux 音频驱动

音频是最常用到的功能&#xff0c;音频也是linux和安卓的重点应用场合。STM32MP1带有SAI接口&#xff0c;正点原子的STM32MP1开发板通过此接口外接了一个CS42L51音频DAC芯片&#xff0c;本章就来学习一下如何使能CS42L51驱动&#xff0c;并且CS42L51通过芯片来完成音乐播放与录…

Day39 QTableWidget类的使用

1.简介 介绍QtableWidget各种属性的用法&#xff0c;以及常用的一些信号&#xff0c;最后利用这些特性&#xff0c;制作一个用于下发设备运行参数的表格。该表格可以实现折叠和取消折叠&#xff0c;在源代码中用了事件过滤器实现&#xff0c;也可以用自带的click信号。显示了图…

“第五十九天”

这是昨天那道题&#xff0c;这个后面自己的处理思路还是差了点&#xff0c;这道题关键感觉就是对进位的处理的&#xff0c;由于进位的存在&#xff0c;所以处理数据的时候只能从最低位开始&#xff0c;我一开始是从高位处理的&#xff0c;而且后面越来越迷&#xff0c;这个点一…

自家开发VS第三方美颜SDK:技术和资源的比较

开发直播平台时&#xff0c;开发人员面临一个关键决策&#xff1a;是选择使用第三方美颜SDK&#xff0c;还是自家开发美颜算法&#xff1f;本文将深入探讨这两种方法的技术和资源方面的比较&#xff0c;帮助开发者更好地决定哪种途径最适合他们的应用。 一、第三方美颜SDK&am…

智能电表和互感器一起安装有什么效果?

智能电表和互感器的普及&#xff0c;为用电管理提供了更为精确和便捷的方式。那么&#xff0c;当智能电表和互感器一起安装时&#xff0c;会产生怎样的"化学反应"呢&#xff1f;下面&#xff0c;小编就来为大家详细的讲解下智能电表和互感器一起安装的作用吧&#xf…

lua-web-utils库

lua--导入所需的库local web_utilsrequire("lua-web-utils")--定义要下载的URLlocal url"https://jshk.com.cn/"--定义代理服务器的主机名和端口号local proxy_port8000--使用web_utils的download函数下载URLlocal file_pathweb_utils.download(url,proxy_…

2023最新C语言编程练习题大全(一)

目录 一、初识C语言1.1 第一个C语言程序1.2 一个完整的C语言程序1.3 输出名言1.4 计算正方形的周长 二、一个简单的C语言程序2.1 输出一个正方形2.2 输出直角三角形2.3 设计一个简单的求和程序2.4 求10!2.5 三个数由小到大排序2.6 猴子吃桃2.7 阳阳买苹果 一、初识C语言 1.1 第…

MATLAB 绘制 SISO 和 MIMO 线性系统的时间和频率响应图

系列文章目录 文章目录 系列文章目录前言一、时间响应二、频率响应三、极点/零点图和根节点四、响应特性五、分析 MIMO 系统六、系统比较七、修改时间轴或频率轴数值如果觉得内容不错&#xff0c;请点赞、收藏、关注 前言 本例演示如何绘制 SISO 和 MIMO 线性系统的时间和频率…

设计模式04———桥接模式 c#

桥接模式&#xff1a;将一个事物从多个维度抽象出来&#xff0c;采用 分离 和 组合 的方式 替代 原本类的继承 桥接模式&#xff08;Bridge Pattern&#xff09;是一种软件设计模式&#xff0c;属于结构型模式&#xff0c;它用于将抽象部分与具体实现部分分离&#xff0c;以便它…

Java实现对Html文本的处理

1.引入jsoup <dependency><groupId>org.jsoup</groupId><artifactId>jsoup</artifactId><version>1.8.3</version> </dependency> 2. html示例 示例代码&#xff1a; <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1…

【Linux】 man命令使用

介绍 man命令是Linux下最核心的命令之一。而man命令也并不是英文单词“man”的意思&#xff0c;它是单词manual的缩写&#xff0c;即使用手册的意思。 man命令会列出一份完整的说明。 其内容包括命令语法、各选项的意义及相关命令 。更为强大的是&#xff0c;不仅可以查看Lin…

Kali Linux:网络与安全专家的终极武器

文章目录 一、Kali Linux 简介二、Kali Linux 的优势三、使用 Kali Linux 进行安全任务推荐阅读 ——《Kali Linux高级渗透测试》适读人群内容简介作者简介目录 Kali Linux&#xff1a;网络与安全专家的终极武器 Kali Linux&#xff0c;对于许多网络和安全专业人士来说&#x…

InetAddress.getLocalHost() 执行非常慢

昨天同事反馈网关的请求非常慢&#xff0c;一个获取的token的接口响应都超过了30s&#xff0c;还好只是测试环境。 经过验证&#xff0c;几乎所有接口响应都很慢&#xff0c;很多都响应超时。 排查步骤&#xff1a; 0. 本地启动项目测试&#xff0c;没有这个问题。而且生产环…

Python基础之列表、元组和字典

一文拿捏Python基本数据类型“列表、数组和字典” 引言 Python中的 列表(英文叫list) 、 元组(英文叫tuple)和字典&#xff08;dictionary&#xff09; 也是 序列 特性的&#xff0c;它们也是非常常用的数据类型。 1、列表&#xff08;List&#xff09; 01、概述 列表&#…

【Ubuntu】虚拟机安装系统与初始化配置

一、安装ubuntu系统 1、首先在虚拟机上安装一个虚拟机系统。 简单操作忽略&#xff0c;只贴出与安装linux不同的地方。 内存&#xff0c;处理器&#xff0c;磁盘等什么自己看着需要自己增加们这边不做过多说明。一直下一步&#xff0c;然后就安装好了。2、选择镜像位置然后启…