深度学习_3 数据操作之线代,微分

线代基础

标量

只有一个元素的张量。可以通过 x = torch.tensor(3.0) 方式创建。

向量

由多个标量组成的列表(一维张量)。比如 x = torch.arange(4) 就是创建了一个1*4的向量。可以通过下标获取特定元素(x[3]),可以通过 len(x) 获取长度,可以通过 x.shape 获取形状。

矩阵

二维张量,比如 reshape(a,b) 后得到的张量。

可以通过 X.T 转置。

张量运算

相同形状的张量二元运算是标量,向量,矩阵运算的扩展。

加法:所有元素分别求和。

乘法:对应位置元素分别相乘。

加标量/乘标量:所有元素分别加/乘标量。

降维

sum() 是可以实现降维操作的。A.sum() 是直接沿所有维度求和得到一个标量。还可以指定维度求和进行降维。

A
# Output
(tensor([[ 0.,  1.,  2.,  3.],[ 4.,  5.,  6.,  7.],[ 8.,  9., 10., 11.],[12., 13., 14., 15.],[16., 17., 18., 19.]]),A_sum_axis0 = A.sum(axis=0)
A_sum_axis0, A_sum_axis0.shape
# Output
(tensor([40., 45., 50., 55.]), torch.Size([4]))A_sum_axis1 = A.sum(axis=1)
A_sum_axis1, A_sum_axis1.shape
# Output
(tensor([ 6., 22., 38., 54., 70.]), torch.Size([5]))A.sum(axis=[0, 1])  # 结果和A.sum()相同
# Output
tensor(190.)

总和也可以用 A.mean() 或者 A.sum()/A.numel() 来算。

也可以利用 A.mean(axis=0)A.sum(axis=0)/A.shape[0] 来降低维度。

非降维求和
sum_A = A.sum(axis=1, keepdims=True)
sum_A
# Output
tensor([[ 6.],[22.],[38.],[54.],[70.]])A / sum_A	# 广播操作
# Output
tensor([[0.0000, 0.1667, 0.3333, 0.5000],[0.1818, 0.2273, 0.2727, 0.3182],[0.2105, 0.2368, 0.2632, 0.2895],[0.2222, 0.2407, 0.2593, 0.2778],[0.2286, 0.2429, 0.2571, 0.2714]])A.cumsum(axis=0)	# 按行求和且不降维
# Output
tensor([[ 0.,  1.,  2.,  3.],[ 4.,  6.,  8., 10.],[12., 15., 18., 21.],[24., 28., 32., 36.],[40., 45., 50., 55.]])
矩阵乘法

左矩阵逐列和右矩阵逐行相乘。

torch.mv(a,b)

范数

向量的大小。

L1范数:各个分量绝对值长度求和。

L2范数:欧几里得长度(比如二维向量是a2+b2 开根)。

Frobenius范数:矩阵中每一个元素的平方和开根。

微积分

微分

导数的基本概念就不详细叙述了,这是大学必修课。

常用公式:

1698756745588

自动微分

python 里是自动求导,一个函数在指定值上做求导。

1698811840756

正向传递:如上图,先计算 w 关于 x 的导数,在计算 b 关于 a 的导数……

反向传递:全过程正好相反,先计算 z 关于 b 的导数,再计算 b 关于 a 的导数……

正向反向累积的时间复杂度都是 O(N),但是正向空间复杂度是 O(1),反向一直要把所有的中间结果记录下来,空间复杂度 O(N)。

显示构造:先定义公式,再赋值。

1698811994384

隐式构造:pytorch 采用的是这种方案。

1698812013657

下面展开一个具体的计算例子。比如我们要计算 y=2x2 的导数。

# 先创建 x
from mxnet import autograd, np, npx
npx.set_np()
x = np.arange(4.0)	#[0. ,1. ,2. ,3.]
x.requires_grad_(True)  # 等价于x=torch.arange(4.0,requires_grad=True)
# 在计算关于x的梯度后,将能够通过'grad'属性访问它,它的值被初始化为 [0. ,0. ,0. ,0.]
y = 2 * torch.dot(x, x)
y.backward()
x.grad		# [0. ,4. ,8. ,12.]
# y 的导数在这几个点上应该是 4x。验证一下是否正确
x.grad == 4 * x	# [True,True,True,True]# 再算一下另一个函数
x.grad.zero_()	# 清零
y=x.sum()		# x_1+x_2+...+x_n
y.backward()
x.grad			# [1. ,1. ,1. ,1.]x.grad.zero_()	# 清零
y = x * x  # y是一个向量,注意这里是哈马达积,和前面的点积不一样。点积得到的是一个标量,这个是每个x对应彼此相乘得到的1*4的向量
# 等价于y.backward(torch.ones(len(x)))
y.sum().backward()
x.grad  # 等价于y=sum(x*x) [0. ,2. ,4. ,8.]# 分离计算:比如z=u*x, u=x*x,但是我们不想把 u 展开求导,我们期望对 z 求 x 导数得到 u
x.grad.zero_()
y = x * x
u = y.detach()	# 相当于 requires_grad = False,不会得到梯度
z = u * x
z.sum().backward()
x.grad == u# 自动微分也可以计算包含条件分支的分段。以下分段本质上都是k*a。
def f(a):b = a * 2while b.norm() < 1000:b = b * 2if b.sum() > 0:c = belse:c = 100 * breturn c
a = torch.randn(size=(), requires_grad=True)
d = f(a)
d.backward()
a.grad == d / a	# True

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/129034.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Vue3入门指南:零基础小白也能轻松理解的学习笔记

文章目录 创建项目开发环境项目目录模板语法属性绑定条件渲染列表渲染事件处理内联事件处理器方法事件处理器&#xff08;常用&#xff09; 事件参数获取 event 事件事件传参 事件修饰符阻止默认事件阻止事件冒泡 数组变化侦测变更方法替换一个数组 计算属性class 绑定单对象绑…

野火霸天虎 STM32F407 学习笔记_1 stm32介绍;调试方法介绍

STM32入门——基于野火 F407 霸天虎课程学习 前言 博主开始探索嵌入式以来&#xff0c;其实很早就开始玩 stm32 了。但是学了一段时间之后总是感觉还是很没有头绪&#xff0c;不知道在学什么。前前后后分别尝试了江协科技、正点原子、野火霸天虎三次 stm32 的课程学习。江协科…

多模态 多引擎 超融合 新生态!2023亚信科技AntDB数据库8.0产品发布

9月20日&#xff0c;以“多模态 多引擎 超融合 新生态”为主题的亚信科技AntDB数据库8.0产品发布会成功举办&#xff0c;从技术和生态两个角度全方位展示了AntDB数据库第8次大型能力升级和生态建设成果。浙江移动、用友、麒麟软件、华录高诚、金云智联等行业伙伴及业界专家共同…

如何做好网页配色,分享一些配色方案和方法

很多网页设计师在选择网页配色方案时&#xff0c;会纠结于用什么网页UI配色方案来吸引客户的注意力&#xff0c;传达信息。选择正确的颜色是网页设计不可或缺的一部分。本指南将从色彩理论和色彩心理学入手&#xff0c;分享三个网页UI配色的简单步骤。 网页UI配色方法有很多&a…

关于msvcp120.dll丢失的解决方法详解,快速解决dll丢失问题

在计算机使用过程中&#xff0c;经常会遇到“msvcp120.dll丢失”的错误提示。这个错误提示通常出现在运行某些程序或游戏时&#xff0c;造成相关应用程序可能无法正常启动或运行。那么&#xff0c;究竟是什么原因导致了msvcp120.dll文件的丢失呢&#xff1f;本文将详细解析msvc…

在 Linux 中更改 echo 的输出颜色

文章目录 前言一、快速入门二、基本使用2.1 对于常规的输出2.2 对于字体加粗的输出2.3 对于字体斜体的输出2.4 对于带下划线的输出2.5 对于闪烁效果的输出 三、小结 前言 在计算机编程世界中&#xff0c;颜色不仅仅是一种视觉效果&#xff0c;它也是一种信息传递的工具。特别是…

Doris:StreamLoad导入数据

目录 1.基本原理 2.支持数据格式 3.StreamLoad语法 3.1.请求参数 3.2.返回参数 4.StreamLoad实践 4.1.使用 curl命令 4.2.使用Java代码 Stream load 是一个同步的导入方式&#xff0c;用户通过发送 HTTP 协议发送请求将本地文件或数据流导入到 Doris 中。Stream load 主…

免费记课时小程序-全优学堂

1. 教师使用小程序记上课 使用步骤 创建了员工账号&#xff0c;员工需设置为教师为班级进行排课使用系统账号绑定小程序&#xff0c;记上课 #1.1 创建员工账号 通过系统菜单’机构设置->员工管理‘&#xff0c;添加本机构教师及其他员工。 添加过程中&#xff0c;可设置…

ffmpeg mp3截取命令,视频与mp3合成带音频视频命令

从00:00:03.500开始截取往后长度到结尾的mp3音频&#xff08;这个更有用&#xff0c;测试好用&#xff09; ffmpeg -i d:/c.mp3 -ss 00:00:03.500 d:/output.mp3 将两个音频合并成一个音频&#xff08;测试好用&#xff09; ffmpeg -i "concat:d:/c.mp3|d:/output.mp3&…

CSS3设计动画样式

CSS3动画包括过渡动画和关键帧动画&#xff0c;它们主要通过改变CSS属性值来模拟实现。我将详细介绍Transform、Transitions和Animations 3大功能模块&#xff0c;其中Transform实现对网页对象的变形操作&#xff0c;Transitions实现CSS属性过渡变化&#xff0c;Animations实现…

Git复制代码

目录 一、常用下载代码 1.登录Git克隆SSH​编辑 2.新建文件然后右键点击Git Bash Here 3.git clone Paste 二. 本地下载 1.从本地进入页面 2.生成代码——>导入——>生成代码后下载 3.解压道相应位置 一、常用下载代码 1.登录Git克隆SSH 2.新建文件然后右键点击…

C# list<T>去重

文章目录 C# list<T>去重值类型去重List<object>object is intobject is decimalobject is charobject is boolobject is string List<int>List<string> 引用类型去重 C# list去重 值类型去重 List object is int //object is intList<object&g…

图像二值化阈值调整——cv2.threshold方法

二值化阈值调整&#xff1a;调整是指在进行图像二值化处理时&#xff0c;调整阈值的过程。阈值决定了将图像中的像素分为黑色和白色的界限&#xff0c;大于阈值的像素被设置为白色&#xff0c;小于等于阈值的像素被设置为黑色。 首先画出灰度直方图&#xff1a;横坐标是灰度值…

制造行业数字化运维破局之道

项目背景 某大型汽车制造集团&#xff0c;致力于通过数字化、智能化运营手段为用户提升提供高品质的汽车产品和服务。IT部门不仅为内外部持续提供服务&#xff0c;同时为业务运营与核心系统运行提供重要支撑。数字化运维作为数字化转型的核心基础&#xff0c;不但要保障数据安…

3D网页游戏外包开发引擎

3D网页开发引擎是用于创建具有三维图形、虚拟现实和交互性的网页应用程序的工具。以下是一些常用的3D网页开发引擎以及它们的主要特点&#xff0c;希望对大家有所帮助。北京木奇移动技术有限公司&#xff0c;专业的软件外包开发公司&#xff0c;欢迎交流合作。 1.Three.js&…

使用 Curl 和 DomCrawler 下载抖音视频链接并存储到指定文件夹

项目需求 假设我们需要从抖音平台上下载一些特定的视频&#xff0c;以便进行分析、编辑或其他用途。为了实现这个目标&#xff0c;我们需要编写一个爬虫程序来获取抖音视频的链接&#xff0c;并将其保存到本地文件夹中。 目标分析 在开始编写爬虫之前&#xff0c;我们需要了…

Redis Twemproxy 集群,水平扩展 ,扩容方案

文章目录 一、概述二、Twemproxy 分布模式三、测试规划四、Redis 服务实例准备4.1 配置Redis实例4.2 创建关资源4.3 启动Redis服务实例 五、Twemproxy 安装准备六、Twemproxy 安装及集群配置6.1 安装 Twemproxy6.2 配置 Twemproxy6.3 启动 twemproxy6.4 测试 twemproxy 集群 如…

如何使用 NFTScan NFT API 在 Polygon 网络上开发 Web3 应用

Polygon 以前被称为 Matic Network&#xff0c;是一种扩展的解决方案&#xff0c;它提供多种工具来加快并降低区块链网络上交易的成本和复杂性。然而&#xff0c;其区块链上的大量活动使以太坊因增长的传输成本和拥挤的流量几乎瘫痪。Polygon 诞生的主要目的是帮助以太坊解决链…

Docker学习——①

文章目录 1、什么是虚拟化、容器化&#xff1f;2、为什么要虚拟化、容器化&#xff1f;3、虚拟化实现方式3.1 应用程序执行环境分层3.2 虚拟化常见类别3.3 常见虚拟化实现3.3.1 主机虚拟化(虚拟机)实现3.3.2 容器虚拟化实现3.3.3 空间隔离实战--基础知识3.3.4 PID 隔离3.3.5 Mo…

springboot+vue基于Hadoop短视频流量数据分析与可视化系统的设计与实现【内含源码+文档+部署教程】

博主介绍&#xff1a;✌全网粉丝10W,前互联网大厂软件研发、集结硕博英豪成立工作室。专注于计算机相关专业毕业设计项目实战6年之久&#xff0c;选择我们就是选择放心、选择安心毕业✌ &#x1f345;由于篇幅限制&#xff0c;想要获取完整文章或者源码&#xff0c;或者代做&am…