自定义的卷积神经网络模型CNN,对图片进行分类并使用图片进行测试模型-适合入门,从模型到训练再到测试,开源项目

自定义的卷积神经网络模型CNN,对图片进行分类并使用图片进行测试模型-适合入门,从模型到训练再到测试:开源项目
开源项目完整代码及基础教程:
https://mbd.pub/o/bread/ZZWclp5x

在这里插入图片描述
CNN模型:
在这里插入图片描述

1.导入必要的库和模块:

torch:PyTorch深度学习框架。

torchvision:PyTorch的计算机视觉库,用于处理图像数据。

transforms:包含数据预处理的模块。

nn:PyTorch的神经网络模块。

F:PyTorch的函数模块,包括各种激活函数等。

optim:优化算法模块。

2.数据预处理:

transforms.Compose:将一系列数据预处理步骤组合在一起。

transforms.ToTensor():将图像数据转换为张量。

transforms.Normalize:对图像数据进行归一化处理,以均值0.5和标准差0.5。

定义批处理大小:

batch_size:每个训练批次包含的图像数量。

加载训练集:

trainset:使用CIFAR-10数据集,设置训练标志为True。

torch.utils.data.DataLoader:创建用于加载训练数据的数据加载器,指定批处理大小和其他参数。

加载测试集:

testset:使用CIFAR-10数据集,设置训练标志为False。

torch.utils.data.DataLoader:创建用于加载测试数据的数据加载器,指定批处理大小和其他参数。

定义CNN模型:

My_CNN:自定义的卷积神经网络模型,包括卷积层、池化层和全连接层。

创建CNN模型、损失函数和优化器:

model:创建My_CNN模型的实例。

nn.CrossEntropyLoss():定义用于多分类问题的交叉熵损失函数。

optim.SGD:使用随机梯度下降优化器,指定学习率和动量。

训练模型:

epochs:指定训练轮数。

循环中的嵌套循环:迭代训练数据批次,进行前向传播、反向传播和参数优化。

保存模型:

model_path:指定模型保存的路径。

torch.save:保存训练后的模型。

在测试集上评估模型性能:

计算模型在测试集上的准确率。

计算每个类别的准确率。

具体代码来说:

transform = transforms.Compose(

[transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

解释:

transforms.Compose:这是一个用于组合多个数据预处理步骤的函数。它允许你按顺序应用多个转换,以便将原始数据转换为最终的形式。

transforms.ToTensor():这是一个数据预处理步骤,将图像数据转换为张量(tensor)的格式。在深度学习中,张量是常用的数据表示方式,因此需要将图像数据从常见的图像格式(如JPEG或PNG)转换为张量。

transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)):这是另一个数据预处理步骤,用于对图像进行归一化处理。归一化的目的是将图像的像素值缩放到一个特定的范围,以便神经网络更容易学习。在这里,均值和标准差都被设置为0.5,这将使图像像素值在-1到1之间。

batch_size = 4trainset = torchvision.datasets.CIFAR10(root='./data', train=True,download=True, transform=transform)trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size,shuffle=True, num_workers=0)testset = torchvision.datasets.CIFAR10(root='./data', train=False,download=True, transform=transform)testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size,shuffle=False, num_workers=0)

解释:

batch_size = 4:定义了每个训练和测试批次中包含的图像数量。在深度学习中,通常将数据分成小批次进行训练,以便更有效地使用计算资源。

trainset 和 testset 的定义:这两行代码加载了CIFAR-10数据集的训练集和测试集,并进行了如下操作:

torchvision.datasets.CIFAR10:使用CIFAR-10数据集,它包括一组包含10个不同类别的图像数据,适用于图像分类任务。

root=‘./data’:指定数据集的存储目录,可以根据需要更改。

train=True 和 train=False:这两个参数分别用于加载训练集和测试集。

download=True:如果数据集尚未下载,会自动下载。

transform=transform:指定了前面定义的数据预处理管道,将在加载数据时应用。

trainloader 和 testloader 的定义:这两行代码创建了数据加载器,将数据集划分为批次以进行训练和测试。

torch.utils.data.DataLoader:这是PyTorch提供的用于加载数据的工具,可以自动处理数据的分批和洗牌等任务。

batch_size=batch_size:指定了每个批次的大小,即每次加载多少图像数据。

shuffle=True 和 shuffle=False:shuffle参数指定是否在每个epoch(训练轮次)之前对数据进行洗牌,以增加数据的随机性。通常在训练时进行洗牌,而在测试时不进行洗牌。

num_workers=0:这个参数指定用于数据加载的线程数。在此代码中,设置为0表示不使用多线程加载数据。如果有多个CPU核心可用,可以将其设置为大于0的值以加速数据加载。

class My_CNN(nn.Module):

def __init__(self):super().__init__()

省略部分代码

def forward(self, x):

省略部分代码

    return x

model = My_CNN()

criterion = nn.CrossEntropyLoss()

optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)

解释:

这部分代码定义了一个卷积神经网络(CNN)模型,并创建了用于训练该模型的损失函数和优化器。让我们逐步解释每一部分:

class My_CNN(nn.Module)::这是一个自定义的CNN模型类的定义。这个类继承自nn.Module,这是PyTorch中构建神经网络模型的基本方式。

def init(self)::这是构造函数,用于初始化CNN模型的各个层。

super().init():调用父类nn.Module的构造函数以确保正确初始化模型。

self.conv1 和 self.conv2:这是两个卷积层的定义,分别具有不同数量的输入和输出通道以及卷积核的大小。

self.pool:这是最大池化层的定义,用于减小特征图的空间尺寸。

self.fc1、self.fc2 和 self.fc3:这是三个全连接层(也称为线性层),用于将卷积层的输出转换为最终的分类结果。

def forward(self, x)::这是前向传播函数,定义了模型的前向传播过程。

在前向传播中,输入x经过卷积层、激活函数(F.relu)、池化层以及全连接层,最终输出分类结果。

torch.flatten(x, 1):这一步将卷积层的输出扁平化,以便将其输入到全连接层。

返回值是模型的输出,表示对输入数据的分类预测。

model = My_CNN():创建了My_CNN类的一个实例,即CNN模型。

criterion = nn.CrossEntropyLoss():定义了损失函数,这里使用的是交叉熵损失函数。它用于衡量模型的预测与实际标签之间的差距,是一个用于监督学习任务的常见损失函数。

optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9):定义了优化器,这里使用的是随机梯度下降(SGD)。优化器负责更新模型的参数,以减小损失函数的值。学习率(lr)和动量(momentum)是优化算法的超参数,影响了参数更新的速度和方向。

epochs=5

for epoch in range(epochs): # loop over the dataset multiple times

running_loss = 0.0for i, data in enumerate(trainloader, 0):# get the inputs; data is a list of [inputs, labels]inputs, labels = data# zero the parameter gradientsoptimizer.zero_grad()# forward + backward + optimizeoutputs = model(inputs)loss = criterion(outputs, labels)loss.backward()optimizer.step()# print statisticsrunning_loss += loss.item()if i % 2000 == 1999:    # print every 2000 mini-batchesprint(f'[{epoch + 1}, {i + 1:5d}] loss: {running_loss / 2000:.3f}')running_loss = 0.0

print('Finished Training')

name_path = './cnn_model_model.pth'

torch.save(model,name_path)

解释:

epochs=5:定义了训练的轮次(epochs),也就是模型将遍历整个训练数据集的次数。

for epoch in range(epochs)::这是一个循环,遍历每个训练轮次。

running_loss = 0.0:用于追踪每个训练轮次的累积损失。

for i, data in enumerate(trainloader, 0)::这个嵌套循环遍历训练数据集的小批次。

i 表示当前批次的索引。

data 包含了当前批次的输入数据和标签。

optimizer.zero_grad():在每个批次开始时,将优化器的梯度清零,以便准备计算新的梯度。

outputs = model(inputs):进行前向传播,将输入数据传递给模型,得到模型的输出。

loss = criterion(outputs, labels):计算损失,衡量模型的预测与实际标签之间的差距。使用了前面定义的交叉熵损失函数。

loss.backward():进行反向传播,计算模型参数相对于损失的梯度。

optimizer.step():根据计算得到的梯度,更新模型的参数,以减小损失函数的值。

running_loss += loss.item():累积当前批次的损失值,用于后续打印统计信息。

if i % 2000 == 1999::每经过2000个小批次,打印一次统计信息。这是为了跟踪训练进度,查看损失是否在逐渐减小。

print(f’[{epoch + 1}, {i + 1:5d}] loss: {running_loss / 2000:.3f}'):打印当前训练轮次和批次的损失值。

running_loss = 0.0:重置累积损失值,以便下一个统计周期。

print(‘Finished Training’):当所有轮次的训练完成后,打印 “Finished Training” 以指示训练结束。

name_path = ‘./cnn_model_model.pth’:指定模型的保存路径。

torch.save(model, name_path):将训练好的模型保存到指定路径。这样可以在之后的任务中加载和使用该模型,而不需要重新训练。

这段代码执行了模型的训练过程,循环遍历多个轮次,每轮次内遍历训练数据的小批次。在每个小批次中,进行前向传播、计算损失、反向传播以及参数更新。训练的目标是通过调整模型参数,减小损失函数的值,从而提高模型的性能。同时,每隔一定数量的小批次,打印训练统计信息以监视训练进度。最后,训练完成后,模型被保存到文件以备将来使用。

classes = ('plane', 'car', 'bird', 'cat','deer', 'dog', 'frog', 'horse', 'ship', 'truck')

prepare to count predictions for each class

correct_pred = {classname: 0 for classname in classes}

total_pred = {classname: 0 for classname in classes}

again no gradients needed

with torch.no_grad():

for data in testloader:images, labels = dataoutputs = model(images)_, predictions = torch.max(outputs, 1)# collect the correct predictions for each classfor label, prediction in zip(labels, predictions):if label == prediction:correct_pred[classes[label]] += 1total_pred[classes[label]] += 1

print accuracy for each class

for classname, correct_count in correct_pred.items():

accuracy = 100 * float(correct_count) / total_pred[classname]print(f'Accuracy for class: {classname:5s} is {accuracy:.1f} %')

解释:

classes = (‘plane’, ‘car’, ‘bird’, ‘cat’,‘deer’, ‘dog’, ‘frog’, ‘horse’, ‘ship’, ‘truck’):这是数据集中的类别标签,它们代表CIFAR-10数据集中的10个不同类别,分别是飞机、汽车、鸟类、猫、鹿、狗、青蛙、马、船和卡车。

correct_pred 和 total_pred:这两个字典用于跟踪每个类别的正确预测数量和总预测数量,初始化为零。

with torch.no_grad()::这个语句块指示在此之后的计算不需要梯度信息。这是因为在测试阶段,我们不需要计算梯度,只是进行前向传播和计算准确度。

for data in testloader::遍历测试数据集的小批次。

images, labels = data:将小批次数据分成图像和对应的标签。

outputs = model(images):使用训练好的模型对图像进行预测,得到模型的输出。

_, predictions = torch.max(outputs, 1):通过 torch.max 函数找到每个样本预测的类别,即具有最高预测分数的类别。

for label, prediction in zip(labels, predictions)::通过 zip 函数,将实际标签和预测标签一一对应起来,以便比较它们。

if label == prediction::比较实际标签和预测标签,如果它们相等,表示模型做出了正确的预测。

correct_pred[classes[label]] += 1:对应类别的正确预测数量加一。

total_pred[classes[label]] += 1:对应类别的总预测数量加一。

for classname, correct_count in correct_pred.items()::遍历每个类别和其正确预测数量。

accuracy = 100 * float(correct_count) / total_pred[classname]:计算每个类别的准确度,即正确预测数量除以总预测数量,以百分比表示。

print(f’Accuracy for class: {classname:5s} is {accuracy:.1f} %'):打印每个类别的准确度,格式化输出。

总结:这段代码的目标是计算并打印出每个类别的分类准确度,以便评估模型在不同类别上的性能。这是在测试阶段对模型性能进行评估的一种方式。

测试模型的代码:

import torch

from PIL import Image

from torch import nn

import torch

import torchvision

import torch.nn.functional as F

device = torch.device('cuda')

image_path=“plane.png”

image =Image.open(image_path)

print(image)

image=image.convert('RGB')

transform=torchvision.transforms.Compose([torchvision.transforms.Resize((32,32)),torchvision.transforms.ToTensor()])

image=transform(image)

print(image.shape)

class My_CNN(nn.Module):

def __init__(self):super().__init__()省略部分代码        return x

#加载模型

model = torch.load(“cnn_net_model.pth”,map_location=torch.device(‘cuda’))#加载完成网络模型,映射

print(model)#维数不够

image = torch.reshape(image,(1,3,32,32))#这一个很重要,要满足四个通道

image=image.to(device)#做cuda变换,不然报错

model.eval()

with torch.no_grad():#节约内存性能

output=model(image)

#识别类别,数字最大的就是我们的结果

print(output)

解释:

导入必要的库和模块:

torch:PyTorch库,用于构建和运行深度学习模型。

PIL:Python Imaging Library,用于处理图像。

nn:PyTorch的神经网络模块。

F:PyTorch的函数模块。

device:将模型加载到GPU设备。

image_path:待分类的图像文件路径。

Image.open(image_path):使用PIL库打开图像文件。

图像的预处理:

image.convert(‘RGB’):将图像转换为RGB模式,以确保图像通道数为3。

transform:定义了一系列的图像预处理操作,包括将图像缩放到32x32像素大小并将其转换为PyTorch的Tensor数据类型。

image = transform(image):应用上述的预处理操作,将图像准备好以供模型处理。

定义神经网络模型:

My_CNN 类:这是一个自定义的卷积神经网络模型,包括两个卷积层,两个池化层,以及三个全连接层。这个模型与之前训练的CNN模型相似,用于图像分类任务。

加载预训练模型:

model = torch.load(“cnn_net_model.pth”, map_location=torch.device(‘cuda’)):加载之前训练并保存的CNN模型。map_location 参数指定了模型的加载位置,这里指定为CUDA/GPU。

调整输入图像的维度和数据类型:

image = torch.reshape(image, (1, 3, 32, 32)):将输入的图像数据调整为适合模型的维度(1个样本,3个通道,32x32像素大小)。

image = image.to(device):将图像数据移动到GPU设备,以便进行GPU上的推理。

模型推理和分类:

model.eval():将模型切换到推理模式,这意味着模型不再更新梯度。

with torch.no_grad()::在这个块中,不会计算或保存梯度信息,以提高性能和节省内存。

output = model(image):对输入的图像进行前向传播,得到模型的输出。

print(output):打印模型的输出,这是一个包含了不同类别的分数的张量。

测试结果:

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/128625.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

PP-Matting:trimap free的高精度自然图像抠图

论文:https://arxiv.org/abs/2204.09433 代码:https://github.com/PaddlePaddle/PaddleSeg 1、动机 在自然图像抠图领域,大多数方法都是基于Trimap来做抠图,这种trimap-based的方式在抠图时还需要用户绘制一个trimap作为模型输入&…

SpringBoot--Web开发篇:含enjoy模板引擎整合,SpringBoot整合springMVC;及上传文件至七牛云;restFul

SpringBoot的Web开发 官网学习: 进入spring官网 --> projects --> SpringBoot --> LEARN --> Reference Doc. --> Web --> 就能看到上述页面 静态资源映射规则 官方文档 总结: 只要是静态资源,放在类路径下&#xff1…

整理笔记——0欧电阻、电感、磁珠

设计电路时,经常用到0欧电阻、电感、磁珠,这三个基础电子原件万用表量都是“短路”,这三者之间有什么区别?什么情况下用什么原件? 一、0欧电阻 0欧电阻,并不是指元件的电阻值为0,而是电阻值很小…

使用免费 FlaskAPI 部署 YOLOv8

目标检测和实例分割是计算机视觉中关键的任务,使计算机能够在图像和视频中识别和定位物体。YOLOv8是一种先进的、实时的目标检测系统,因其速度和准确性而备受欢迎。 Flask是一个轻量级的Python Web框架,简化了Web应用程序的开发。通过结合Fla…

SpringBoot 日志

一、概述 日志是程序的重要组成部分,程序报错了,我们可以通过查看日志信息排除和定位问题。 二、日志格式 在启动 SpringBoot 项目时,控制台中默认会打印一些日志,下面我们截取一段日志信息,分析一下日志的格式&…

【蓝桥每日一题]-二分类型(保姆级教程 篇3) #路标设置 #跳石头

今天接着讲二分题型 目录 题目:路标设置 思路: 题目:跳石头 思路: 题目:路标设置 思路: 求:放n个路标后的最小空旷指数 二分查找:对空旷指数进行二分 二分依据: 该空旷指数下放…

支付宝本地生活团购服务商如何申请?两个方法教给你

支付开宝的本地生活来了!按支付宝财大气粗的做法,它一旦要推什么项目,那自然会在前期疯狂洒钱,以求通过这种模式快速占领市场。 所以,这次支付宝要推本地生活项目,这一贯做法自然得跟上,只是这…

飞致云及其旗下1Panel项目进入2023年第三季度最具成长性开源初创榜单

2023年10月26日,知名风险投资机构Runa Capital发布2023年第三季度ROSS指数(Runa Open Source Startup Index)。ROSS指数按季度汇总并公布在代码托管平台GitHub上年化增长率(AGR)排名前二十位的开源初创公司和开源项目。…

win10pycharm和anaconda安装和环境配置教程

windows10 64位操作系统下系统运行环境安装配置说明 下载和安装Anaconda,链接https://www.anaconda.com/download 下载完后,双击exe文件 将anaconda自动弹出的窗口全部关掉即可,然后配置高级系统变量 根据自己的路径,配置…

基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP

最近我在 International Journal of Digital Earth (《国际数字地球学报》)发表了一篇森林生物量模型构建的文章:Evaluation of machine learning methods and multi-source remote sensing data combinations to construct forest above-gro…

欧科云链研究院:如何降低Web3风险,提升虚拟资产创新的安全合规

在香港Web3.0行业,技术推动了虚拟资产投资市场的快速增长,但另一方面,JPEX诈骗案等行业风险事件也接连发生,为Web3行业发展提供了重要警示。在近期的香港立法会施政报告答问会上,行政长官李家超表示,与诈骗…

图像特征Vol.1:计算机视觉特征度量|第二弹:【统计区域度量】

目录 一、前言二、统计区域度量2.1:图像矩特征2.1.1:原始矩/几何矩2.1.2:中心距2.1.3:归一化的中心矩2.1.4:不变矩——Hu矩2.1.5:OpenCv实现矩特征及其应用 2.2:点度量特征2.3:全局直…

在 GORM 中定义模型

为实现与数据库的无缝交互而打造有效模型的全面指南 在使用 GORM 进行数据库管理时,定义模型是基础。模型是您的应用程序的面向对象结构与数据库的关系世界之间的桥梁。本文深入探讨了在 GORM 中打造有效模型的艺术,探讨如何创建结构化的 Go 结构体&…

从零开始的目标检测和关键点检测(三):训练一个Glue的RTMPose模型

从零开始的目标检测和关键点检测(三):训练一个Glue的RTMPose模型 一、重写config文件二、开始训练三、ncnn部署 从零开始的目标检测和关键点检测(一):用labelme标注数据集 从零开始的目标检测和关键点检测…

左移测试,如何确保安全合规还能实现高度自动化?

「云原生安全既是一种全新安全理念,也是实现云战略的前提。 基于蚂蚁集团内部多年实践,云原生PaaS平台SOFAStack发布完整的软件供应链安全产品及解决方案,包括静态代码扫描Pinpoint,软件成分分析SCA,交互式安全测试IA…

二、GRE VPN

GRE VPN 1、GRE介绍2、GRE基本原理3、GRE报文格式4、报文在GRE中传输过程5、价值6、Keepalive检测7、GRE应用8、配置GRE隧道8.1、配置绑定GRE协议的接口8.2、配置Tunnel接口8.3、配置Tunnel路由 9、GRE配置举例9.1、GRE静态路由示例9.1.1、路由器运行动态路由协议实现互通9.1.2…

NEFU数字图像处理(3)图像分割

一、图像分割的基本概念 1.1专有名词 前景和背景 在图像分割中,我们通常需要将图像分为前景和背景两个部分。前景是指图像中我们感兴趣、要分割出来的部分,背景是指和前景不相关的部分。例如,对于一张人物照片,人物就是前景&…

mysql迁移data目录(Linux-Centos)

随着时间的推移,mysql的数据量越越大,使用yum默认安装的目录为系统盘 /var/lib/mysql,现重新挂载了一个硬盘,需要做数据目录的迁移到 /mnt/data/。以解决占用系统盘过高情况。 1.强烈建议这种操作。镜像一个一样的Centos系统&…

MyBatis无法读取XML中的Method的乌龙事件

事件背景 同事反馈,相同的jar包,在多人本地的电脑、多台服务器中,都是可以正常启动的,只有在其中一台服务器,简称它为A,无法启动,因为启动后的初始化操作中有一个调用mybatis方法的操作&#x…

【CSDN 每日一练 ★★☆】【动态规划】最小路径和

【CSDN 每日一练 ★★☆】【动态规划】最小路径和 动态规划 题目 给定一个包含非负整数的 m x n 网格 grid ,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。 说明:每次只能向下或者向右移动一步。 示例 示例 1&#x…