STM32:AHT20温湿度传感器驱动程序开发

注:温湿度传感器AHT20数据手册.pdf

http://www.aosong.com/userfiles/files/AHT20%E4%BA%A7%E5%93%81%E8%A7%84%E6%A0%BC%E4%B9%A6(%E4%B8%AD%E6%96%87%E7%89%88)%20B1.pdf

一、分析AHT数据手册文档

(1).准备工作

1.新建工程。配置UART2

2.配置I2C1为I2C标准模式,并开启中断和DMA设置

3.设置工程参数为每个外设初始化生成头文件和源文件,而后生成代码。

(2).根据数据手册,编写AHT20驱动

数据手册中的传感器读取流程如下:

1.上电后要等待40ms,读取温湿度值之前, 首先要看状态字的校准使能位Bit[3]是否为 1(通
过发送0x71可以获取一个字节的状态字),如果不为1,要发送0xBE命令(初始化),此命令参数 有两个字节, 第一个字节为0x08,第二个字节为0x00。
2.直接发送 0xAC命令(触发测量),此命令参数有两个字节,第一个字节为 0x33,第二个字节为0x00。
3.等待75ms待测量完成,忙状态Bit[7]为0,然后可以读取六个字节(发0X71即可以读取)。
4.计算温湿度值
1.第一条的意思是,开机后,要等待40ms才能够与AHT20通信。因此在AHT20建立通信前要等待40ms。而后0x71地址实际上AHT20作为IIC从机的地址。按照AHT20手册,在启动传输后,随后传输的 II C首字节包括 7位的 I I C设备地址0x38。因为IIC通信一般使用7为地址码,但是读写数据都是一个字节一个字节的读写。0x38的七位二进制为0111000。规定从机地址要左一位。多出来的第八位就是读写位。IIC协议规定,如果主机发起通信的目的是为了写从机,那么读写位是0,此时AHT20的地址是01110000,即0x70.如果主机发起通信的目的是为了读从机传入的数据,那么读写位就是1。此时AHT20的地址是0x71。对于第8位的读写设置,HAL库已经帮我们封装好了,所以不用特意去操作。用户只当作AHT20的地址是0x70就行。
2.直接发送信息,略
3.等待75ms后,读取6个字节数据,里面包含了状态信息,湿度信息,和温度信息。其中第0个字节是状态位,需获取bit[7]判断设备是否空闲。而后,湿度数据由20个bit位组成:第1个字节是湿度的高8位,第2个字节是湿度的次高8位.第3个字节的高4个bit位是湿度的低4位。温度数据也由20个bit位组成。第3个字节的低4个bit位是温度的高4位,第4个字节是温度的次高8位,第5个字节是温度的低8位。
4.解析完温度、湿度数据后,进行计算

(3),关键代码

aht.h声明函数, aht.c函数定义如下

#include "aht20.h"
#define AHT20_ADDRESS 0x70
//AHT20初始化
void AHT20_Init(){uint8_t readBuffer;//1.工作前延迟40msHAL_Delay(40);//2.从AHT20收取一个字节,判断第Bit[3]是否为1HAL_I2C_Master_Receive(&hi2c1, AHT20_ADDRESS, &readBuffer, 1, HAL_MAX_DELAY);//加上状态位后实际上要判断Bit[4]if( (readBuffer & 0x08)== 0x00){//如果不为1,要发送0xBE命令(初始化)//发送0xBE命令(初始化),此命令参数有两个字节, 第一个字节为0x08,第二个字节为0x00。uint8_t sendBuffer[3] ={0xBE,0x08,0x00};HAL_I2C_Master_Transmit(&hi2c1, AHT20_ADDRESS, sendBuffer, 3, HAL_MAX_DELAY);}
}void AHT20_Read(float *O_Temperature,float* O_Humidity){//输入触发命令和参数uint8_t sendBuffer[3] ={0xAC,0x33,0x00};HAL_I2C_Master_Transmit(&hi2c1, AHT20_ADDRESS, sendBuffer, 3, HAL_MAX_DELAY);//等待75ms测量完成HAL_Delay(75);//读6个字节uint8_t readBuffer[6];HAL_I2C_Master_Receive(&hi2c1, AHT20_ADDRESS, readBuffer, 6, HAL_MAX_DELAY);//其中第0个字节是状态位,需获取bit[7]判断设备是否空闲。为0则不再工作if((readBuffer[0] & 0x80 )==0x00){uint32_t tempdata = 0;//湿度数据由20个bit位组成:第1个字节是湿度的高8位,第2个字节是湿度的次高8位.第3个字节的高4个bit位是湿度的低4位。tempdata =((uint32_t)readBuffer[1] << 12 ) + ((uint32_t)readBuffer[2] <<4 ) +((uint32_t)readBuffer[3] >>4 );//相对湿度计算*O_Humidity = tempdata *1.0f /(1<<20);//温度数据也由20个bit位组成。第3个字节的低4个bit位是温度的高4位,第4个字节是温度的次高8位,第5个字节是温度的低8位。tempdata = (((uint32_t)readBuffer[3] & 0x0F ) <<16 ) +((uint32_t)readBuffer[4] <<8 ) + (uint32_t)readBuffer[5];//转化成摄氏度*O_Temperature= tempdata*200.0f /(1<<20)-50;}}

main.c 关键函数如下:

/* USER CODE BEGIN Includes */
#include "aht20.h"
#include <stdio.h>
#include <string.h>
/* USER CODE END Includes */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP *//* USER CODE END PFP *//*** @brief  The application entry point.* @retval int*/
int main(void)
{/* MCU Configuration--------------------------------------------------------*//* Reset of all peripherals, Initializes the Flash interface and the Systick. */HAL_Init();/* Configure the system clock */SystemClock_Config();/* Initialize all configured peripherals */MX_GPIO_Init();MX_DMA_Init();MX_I2C1_Init();MX_USART2_UART_Init();/* USER CODE BEGIN 2 */AHT20_Init();char message[50];float temperature, humidity;/* USER CODE END 2 *//* Infinite loop *//* USER CODE BEGIN WHILE */while (1){AHT20_Read(&temperature, &humidity);sprintf(message,"温度:%.1f °C,湿度: %.1f %% \r\n",temperature,humidity*100);HAL_UART_Transmit(&huart2, message, 50, HAL_MAX_DELAY);HAL_Delay(1000);/* USER CODE END WHILE *//* USER CODE BEGIN 3 */}/* USER CODE END 3 */
}

注:起初 sprintf(message,"温度:%.1f °C,湿度: %.1f %% \r\n",temperature,humidity*100);会报不支持浮点数输出的错误。

菜单栏Project ->properties解决

二、基于状态机编程实现AHT20的中断程序

上面一节实现的是AHT20的轮询模式。发送HAL_I2C_Master_Transmit ,接收HAL_I2C_Master_Receive都会阻塞主程序,待完全执行完发送/接收内容时程序才会执行下一步操作。而在中断或DMA模式下,发送和接收消息不会阻塞主程序,那么就有可能发生还没接收完数据就对温度、湿度变量进行计算,造成脏读。
HAL_I2C_Master_Transmit_IT()  // 采用中断模式发送
HAL_I2C_Master_Transmit_DMA()  //采用DMA模式发送

HAL_I2C_Master_Receive_IT()        // 采用中断模式接收

HAL_I2C_Master_Receive_DMA()   // 采用DMA模式接收

void HAL_I2C_MasterTxCpltCallback(I2C_HandleTypeDef *hi2c);  //主机发送完成回调函数

void HAL_I2C_MasterRxCpltCallback(I2C_HandleTypeDef *hi2c); //主机接收完成回调函数

所谓状态机编程实际上类似与设计模式中的状态模式类型,把AHT20的通信流程拆分开来。每个状态标识分别对应着自己的处理逻辑,并且指明下一个的状态。
        
改造上述代码。
1).保持AHT20初始化不变
2).拆分温度、湿度发送/接收/计算模块
  • 在状态为0时,发送测温湿度的命令,并将状态值为1。此时要等待DMA或者中断函数处理完成
  • 触发 IIC发送完成回调函数,则表示发送命令完成,将状态置为2
  • 当状态为2时,等待75 ms,让AHT20测温湿度结束。而后发送接收AHT20测温湿度数据的命令,并将状态置为3.
  • 触发 IIC接收完成回调函数,则表示数据接收完成,测试接收到的6字节数据就是温湿度数据。并将状态置为4
  • 当状态为4时,解析接收到的6字节数据,并打印
这样就完成了中断/DMA的测量温湿度数据的案例

三、中断程序主要代码

aht.h声明函数, aht.c函数定义如下
#include <aht20.h>//AHT20设备地址
static uint8_t AHT20_ADDRESS=0x70;
//发送0xBE命令(初始化),此命令参数有两个字节, 第一个字节为0x08,第二个字节为0x00。
static uint8_t AHT20InitCmd[3]={0xBE,0x08,0x00} ;
//输入测量触发命令和参数
static uint8_t AHT20MeasureCmd[3]={0xAC,0x33,0x00};
static uint8_t AHT20readBuffer[6];//AHT20初始化
void AHT20_Init(){uint8_t readOneByte;//1.工作前延迟40msHAL_Delay(40);//2.从AHT20收取一个字节,判断第Bit[3]是否为1HAL_I2C_Master_Receive(&hi2c1, AHT20_ADDRESS, &readOneByte, 1, HAL_MAX_DELAY);//加上状态位后实际上要判断Bit[4]if( (readOneByte & 0x08)== 0x00){//如果不为1,要发送0xBE命令(初始化)//发送0xBE命令(初始化),此命令参数有两个字节, 第一个字节为0x08,第二个字节为0x00。HAL_I2C_Master_Transmit(&hi2c1, AHT20_ADDRESS, AHT20InitCmd, 3, HAL_MAX_DELAY);}
}//发送测量指令
void AHT20_Transmit(){HAL_I2C_Master_Transmit_IT(&hi2c1, AHT20_ADDRESS, AHT20MeasureCmd, 3);
}
//接收测量数据到AHT20readBuffer
void AHT20_Receive(){HAL_I2C_Master_Receive_IT(&hi2c1, AHT20_ADDRESS, AHT20readBuffer, 6);
}
//解析AHT20readBuffer输出O_Temperature和O_Humidity
void AHT20_Analysis(float *O_Temperature,float* O_Humidity){//其中第0个字节是状态位,需获取bit[7]判断设备是否空闲。为0则不再工作if((AHT20readBuffer[0] & 0x80 )==0x00){uint32_t tempdata = 0;//湿度数据由20个bit位组成:第1个字节是湿度的高8位,第2个字节是湿度的次高8位.第3个字节的高4个bit位是湿度的低4位。tempdata =((uint32_t)AHT20readBuffer[1] << 12 ) + ((uint32_t)AHT20readBuffer[2] <<4 ) +((uint32_t)AHT20readBuffer[3] >>4 );//相对湿度计算*O_Humidity = tempdata *1.0f /(1<<20);//温度数据也由20个bit位组成。第3个字节的低4个bit位是温度的高4位,第4个字节是温度的次高8位,第5个字节是温度的低8位。tempdata = (((uint32_t)AHT20readBuffer[3] & 0x0F ) <<16 ) +((uint32_t)AHT20readBuffer[4] <<8 ) + (uint32_t)AHT20readBuffer[5];//转化成摄氏度*O_Temperature= tempdata*200.0f /(1<<20)-50;}
}

main.c关键代码

/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "dma.h"
#include "i2c.h"
#include "usart.h"
#include "gpio.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include <stdio.h>
#include <string.h>
/* USER CODE END Includes *//* Private variables ---------------------------------------------------------*//* USER CODE BEGIN PV */
//状态:0 初始状态,1正在发送测量指令 2测量指令发送完成  3 IIC读取ANT20数据中 4 读取完成
uint8_t  aht20State =0;
/* USER CODE END PV *//* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
void HAL_I2C_MasterTxCpltCallback(I2C_HandleTypeDef *hi2c){if(hi2c == &hi2c1){aht20State =2;}
}
void HAL_I2C_MasterRxCpltCallback(I2C_HandleTypeDef *hi2c){if(hi2c == &hi2c1){aht20State =4;}
}
/* USER CODE END 0 */int main(void)
{HAL_Init();/* Configure the system clock */SystemClock_Config();/* Initialize all configured peripherals */MX_GPIO_Init();MX_DMA_Init();MX_I2C1_Init();MX_USART2_UART_Init();/* USER CODE BEGIN 2 */AHT20_Init();char message[50];float temperature, humidity;/* USER CODE END 2 *//* Infinite loop *//* USER CODE BEGIN WHILE */while (1){if(aht20State == 0){//初始状态//测量数据AHT20_Transmit();aht20State=1;}else if(aht20State == 2){HAL_Delay(75);//读取数据AHT20_Receive();aht20State=3;}else if(aht20State == 4){//AHT20_AHT20_Analysis(&temperature, &humidity);sprintf(message,"温度:%.1f °C,湿度: %.1f %% ",temperature,humidity*100);HAL_UART_Transmit(&huart2, (uint8_t *)message, strlen(message), HAL_MAX_DELAY);HAL_Delay(1000);aht20State= 0;}/* USER CODE END WHILE *//* USER CODE BEGIN 3 */}/* USER CODE END 3 */
}

查看效果:波特律动 串口助手

        

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/128410.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Rocky9 上安装 redis-dump 和redis-load 命令

一、安装依赖环境 1、依赖包 dnf -y install perl gcc gcc-c zlib-devel2、编译openssl 1.X ### 下载编译 wget https://www.openssl.org/source/openssl-1.1.1t.tar.gz tar xf openssl-1.1.1t.tar.gz cd openssl-1.1.1t ./config --prefix/usr/local/openssl make make ins…

Vue项目创建与启动(2023超详细的图文教程)

目录 一、下载node.js 二、下载vue-cli与webpack插件 三、项目初始化(项目配置详细信息) 四、项目启动 五、Vue项目工程结构&#xff08;扩展知识&#xff09; 一、下载node.js 1.检测是否已经安装过node.js 打开控制台,输入 npm -v如果有会显示对应版本 如果没有会显示…

Python框架之Flask入门和视图

一、Flask入门和视图 需要安装Pycharm专业版 1. Flask简介 Python后端的2个主流框架 Flask 轻量级框架Django 重型框架 Flask是一个基于Python实现的web开发微框架 官方文档&#xff1a;https://flask.palletsprojects.com/ 中文文档&#xff1a;https://dormousehole.readthe…

防范欺诈GPT

去年&#xff0c;ChatGPT的发布让全世界都感到惊讶和震惊。 突然间出现了一个平台&#xff0c;它比之前的任何其他技术都更深入地了解互联网。人工智能可以被训练成像阿姆一样说唱&#xff0c;以世界著名诗人的风格写作&#xff0c;并精确地翻译内容&#xff0c;以至于它似乎能…

【Unity实战】最全面的库存系统(二)

文章目录 先来看看最终效果前言箱子库存箱子存储物品玩家背包快捷栏满了,物品自动加入背包修复开着背包拾取物品不会刷新显示的问题将箱子库存和背包分开,可以同时打开完结先来看看最终效果 前言 本期紧跟着上期,继续来完善我们的库存系统,实现箱子库存和人物背包 箱子库…

R语言的DICE模型实践技术

随着温室气体排放量的增大和温室效应的增强&#xff0c;全球气候变化问题受到日益的关注。我国政府庄严承诺在2030和2060年分别达到“碳达峰”和“碳中和”&#xff0c;因此气候变化和碳排放已经成为科研人员重点关心的问题之一。气候变化问题不仅仅是科学的问题&#xff0c;同…

React中的状态管理

目录 前言 1. React中的状态管理 1.1 本地状态管理 1.2 全局状态管理 Redux React Context 2. React状态管理的优势 总结 前言 当谈到前端开发中的状态管理时&#xff0c;React是一个备受推崇的选择。React的状态管理机制被广泛应用于构建大型、复杂的应用程序&#xf…

贪心算法学习------优势洗牌

目录 一&#xff0c;题目 二&#xff0c;题目接口 三&#xff0c;解题思路和代码 全部代码&#xff1a; 一&#xff0c;题目 给定两个数组nums1和nums2,nums1相对于nums2的优势可以用满足nums1[i]>nums2[i]的索引i的数目来描述。 返回nums1的任意排序&#xff0c;使其优…

[AUTOSAR][诊断管理][ECU][$3E] 测试设备在线|会话保持

文章目录 一、简介二、服务请求报文定义三、肯定响应四、支持的NRC四、示例步骤(1)supportPosRspMsgIndicationBit=0(2)supportPosRspMsgIndicationBit=1三、示例代码3e_test_present.c一、简介 这个服务的目的是确保诊断服务或者之前激活的通信还处在激活的状态,可以保持…

【51单片机】矩阵键盘与定时器(学习笔记)

一、矩阵键盘 1、矩阵键盘概述 在键盘中按键数量较多时&#xff0c;为了减少I/O口的占用&#xff0c;通常将按键排列成矩阵形式 采用逐行或逐列的“扫描”&#xff0c;就可以读出任何位置按键的状态 2、扫描的概念 数码管扫描&#xff08;输出扫描&#xff09;&#xff1a;…

Nginx搭配负载均衡和动静分离:构建高性能Web应用的完美组合

目录 前言 一、Nginx简介 1.Nginx是什么 2.Nginx的特点 3.Nginx在哪使用 4.如何使用Nginx 5.Nginx的优缺点 6.Nginx的应用场景 二、负载均衡和动静分离 1.负载均衡 2.动静分离 三、Nginx搭载负载均衡并提供前后端分离后台接口数据 1.Nginx安装 2.tomcat负载均衡 …

68 内网安全-域横向PTHPTKPTT哈希票据传递

目录 演示案例:域横向移动PTH传递-Mimikatz域横向移动PTK传递-Mimikatz域横向移动PTT传递-MS14068&kekeo&local国产Ladon内网杀器测试验收-信息收集,连接等 涉及资源: PTH(pass the hash) #利用lm或ntlm的值进行的渗透测试 PTT(pass the ticket) #利用的票据凭证TGT进行…

最长回文子串-LeetCode5 动态规划

由于基础还不是很牢固 一时间只能想到暴力的解法: 取遍每个子串 总数量nn-1n-2…1 O(n^2) 判断每个子串是否属于回文串 O(n) 故总时间复杂度为O(n^3) class Solution { public:string longestPalindrome(string s) { int max0;string ret;for(int i0;i<s.size();i)for(int…

Run, Don‘t Walk: Chasing Higher FLOPS for Faster Neural Networks(CVPR2023)

文章目录 AbstractIntroduction过去工作存在的不足我们的工作主要贡献&#xff08;待参考&#xff09; Related workCNNViT, MLP, and variants Design of PConv and FasterNetPreliminaryPartial convolution as a basic operatorPConv followed by PWConvFasterNet as a gene…

Android应用集成RabbitMQ消息处理指南

Android应用集成RabbitMQ消息处理指南 RabbitMQ1、前言2、RabbitMQ简介2.1、什么是RabbitMQ2.2、RabbitMQ的特点2.3、RabbitMQ的工作原理2.4、RabbitMQ中几个重要的概念 3、在Android Studio中集成RabbitMQ3.1、在Manifest中添加权限&#xff1a;3.2、在build.gradle(:app)下添…

人工智能与无人驾驶:未来驾驶体验的革命性变革

人工智能与无人驾驶&#xff1a;未来驾驶体验的革命性变革 人工智能&#xff08;AI&#xff09;和无人驾驶技术的迅速发展正在改变我们的交通方式和出行体验。它们结合了先进的感知技术、智能算法和高性能计算能力&#xff0c;为实现自动驾驶提供了可能性。本文将探讨人工智能和…

一种使用wireshark快速分析抓包文件amr音频流的思路方法

解决方案&#xff1a; 1. 使用wireshark过滤amr,并导出原始数据文件&#xff1b; 2.使用ue的二进制编辑模式&#xff0c;编辑该文件&#xff0c;添加amr头&#xff0c;6个字节数据“#!AMR”&#xff0c;字节数据为 23 21 41 4D 52 0A 3.修正格式&#xff1a;通过抓包发现&#…

Mac安装DBeaver

目录 一、DBeaver Mac版软件简介 二、下载地址 三、DBeaver连接失败报错 3.1 问题描述 3.2 连接失败问题解决 一、DBeaver Mac版软件简介 DBeaver Mac版是一款专门为开发人员和数据库管理员设计的免费开源通用数据库工具。软件的易用性是它的宗旨&#xff0c;是经过精心设计…

MacOS安装homebrew

文章目录 官网脚本无法正常下载安装使用HomebrewCN国内安装脚本进行安装找到一份合适的安装脚步执行安装脚本 Homebrew自己的安装位置使用Homebrew安装tree指令验证安装是否成功Homebrew把软件程序都安装到哪里了 Homebrew安装需要依赖Git&#xff0c;请先确保Git已安装成功 Ho…

基于EPICS stream模块的直流电源的IOC控制程序实例

本实例程序实现了对优利德UDP6720系列直流电源的网络控制和访问&#xff0c;先在此介绍这个项目中使用的硬件&#xff1a; 1、UDP6721直流电源&#xff1a;受控设备 2、moxa串口服务器5150&#xff1a;将UDP6721直流电源设备串口连接转成网络连接 3、香橙派Zero3&#xff1a;运…