七、W5100S/W5500+RP2040树莓派Pico<UDP 组播>

文章目录

  • 1. 前言
  • 2. 相关简介
    • 2.1 简述
    • 2.2 优点
    • 2.3 应用
  • 3. WIZnet以太网芯片
  • 4. UDP 组播回环测试
    • 4.1 程序流程图
    • 4.2 测试准备
    • 4.3 连接方式
    • 4.4 相关代码
    • 4.5 测试现象
  • 5. 注意事项
  • 6. 相关链接

1. 前言

  UDP组播是一种基于UDP协议的通信方式,它允许一台计算机通过发送单个UDP数据包来同时向多个目标发送信息。这种通信方式在需要高效、实时的数据传输的应用中非常有用,比如视频直播、在线游戏等。
  本章节将进行UDP组播回环测试。

  W5100S/W5500是一款集成全硬件 TCP/IP 协议栈的嵌入式以太网控制器,同时也是一颗工业级以太网控制芯片。在以太网应用中使用 W5100S/W5500 让用户可以更加方便地在设备之间实现远程连接和通信。

2. 相关简介

2.1 简述

  UDP组播是一种基于UDP协议的通信方式,也称为多播。它允许一台计算机通过发送单个UDP数据包来同时向多个目标发送信息,而不需要像单播模式那样对每个目标单独发送数据包。

  组播地址是一种特殊的IP地址,范围从224.0.0.0到239.255.255.255,它们被划分为不同的类型,包括局部链接多播地址、预留多播地址和管理权限多播地址。使用组播时,需要在发送方和接收方之间建立对等关系,并使用特定的组播协议来确保数据的传输可靠性和顺序性。

在这里插入图片描述

  组播MAC地址:为了在本地物理网络上实现组播信息的正确传输,需要在链路层使用组播MAC地址。以太网传输IPv4单播报文的时候,目的MAC地址使用的是接收者的MAC地址。但是在传输组播数据时,其目的地不再是一个具体的接收者,而是一个成员不确定的组,所以要使用IPv4组播MAC地址,即IPv4组播地址映射到链路层中的地址。IANA规定,IPv4组播MAC地址的高24位为0x01005e,第25位为0,低23位为IPv4组播地址的低23位,映射关系如下图所示:

在这里插入图片描述

  在组播中,发送方将数据包发送到特定的组播组地址,这个地址不属于任何特定的一台计算机,而是属于一组计算机。只有订阅了这个组播组地址的计算机才能接收到这个数据包。这种通信方式可以有效地节省网络带宽,因为发送方只需要发送一个数据包,而不是对每个接收方都发送一个数据包。

  相比之下,单播模式是点对点的通信方式,每个发送方都需要单独向接收方发送数据包。在某些情况下,如果需要向多个接收方发送相同的数据包,那么单播模式会浪费大量的网络带宽。

  总的来说,UDP组播是一种非常高效的通信方式,适用于需要向多个接收者同时发送相同数据的场景,如视频直播、在线游戏、多用户协作等。

2.2 优点

  • 节省带宽:由于UDP组播允许发送方只需发送一个数据包,就可以到达多个接收方,因此可以显著节省带宽,特别是在接收方较多的情况下。
  • 高效传输:相对于单播模式,UDP组播可以在网络中快速传输数据包,因为它可以在一个网络路径上同时发送到多个接收方。
  • 实时性:UDP组播适用于实时通信,因为它可以立即将数据包发送到所有订阅了组播组的接收方,而无需等待接收方确认。
    可扩展性:通过使用组播地址,可以实现一对多的通信,适用于大规模的数据分发和实时应用

2.3 应用

  • 多媒体广播:多媒体广播应用,如电视和电台广播,通过UDP组播将音频和视频数据传输到多个接收者。
  • 多用户游戏:多用户游戏通过UDP组播将游戏数据传输到多个客户端,实现多人在线游戏。
  • 实时协作:像在线会议这样的实时协作应用,可以使用UDP组播将音频、视频和其他协作数据传输到所有参会者。
  • 分布式系统:UDP组播可以用于分布式系统,将数据从一个节点发送到其他节点,实现数据同步和状态报告等功能。
  • 网络监控:网络监控应用可以通过UDP组播将监控数据发送到多个接收者,例如实时流量监控、网络安全监控等。
  • 视频会议:多人在线的视频会议,每个用户都可以共享到音频、视频数据。

3. WIZnet以太网芯片

WIZnet 主流硬件协议栈以太网芯片参数对比

ModelEmbedded CoreHost I/FTX/RX BufferHW SocketNetwork Performance
W5100STCP/IPv4, MAC & PHY8bit BUS, SPI16KB4Max 25Mbps
W6100TCP/IPv4/IPv6, MAC & PHY8bit BUS, Fast SPI32KB8Max 25Mbps
W5500TCP/IPv4, MAC & PHYFast SPI32KB8Max 15Mbps
  1. W5100S/W6100 支持 8bit数据总线接口,网络传输速度会优于W5500。
  2. W6100 支持IPV6,与W5100S 硬件兼容,若已使用W5100S的用户需要支持IPv6,可以Pin to Pin兼容。
  3. W5500 拥有比 W5100S更多的 Socket数量以及发送与接收缓存

4. UDP 组播回环测试

4.1 程序流程图

在这里插入图片描述

4.2 测试准备

软件

  • Visual Studio Code
  • WIZnet UartTool
  • SocketTester

硬件

  • W5100SIO模块 + RP2040 树莓派Pico开发板 或者 WIZnet W5100S-EVB-Pico开发板
  • Micro USB 接口的数据线
  • TTL 转 USB
  • 网线

4.3 连接方式

  • 通过数据线连接PC的USB口(主要用于烧录程序,也可以虚拟出串口使用)
  • 通过TTL串口转USB,连接UART0 的默认引脚:
    • RP2040 GPIO 0(UART0 TX) <----> USB_TTL_RX
    • RP2040 GPIO 1(UART0 RX) <----> USB_TTL_TX
  • 使用模块连接RP2040进行连线时
    • RP2040 GPIO 16 <----> W5100S MISO
    • RP2040 GPIO 17 <----> W5100S CS
    • RP2040 GPIO 18 <----> W5100S SCK
    • RP2040 GPIO 19 <----> W5100S MOSI
    • RP2040 GPIO 20 <----> W5100S RST
  • 通过网线直接连接PC网口(或:PC和设备都通过网线连接交换机或路由器LAN口)

4.4 相关代码

  我们直接打开udp_multicast.c文件(路径:examples/udp_multicast/udp_multicast.c)看下具体实现:

  可以看到这里是以dhcp模式配置网络信息的,因此在主控和W5100S初始化完成后,会进行DHCP初始化,然后增加一个定时器初始化,用来做DHCP过程中的计时以进行超时处理;接着进入DHCP配置网络信息,成功则直接进入循环调用回环测试函数,失败则用我们初始化的静态网络信息进行配置,然后再进入循环调用回环测试函数,如下所示:

/* Network information to be configured. */
wiz_NetInfo net_info = {.mac = {0x00, 0x08, 0xdc, 0x1e, 0xed, 0x2e}, // Configured MAC address.ip = {192, 168, 1, 10},                     // Configured IP address.sn = {255, 255, 255, 0},                    // Configured subnet mask.gw = {192, 168, 1, 1},                      // Configured gateway.dns = {8, 8, 8, 8},                         // Configured domain address.dhcp = NETINFO_DHCP};                       // Configured dhcp model,NETINFO_DHCP:use dhcp; NETINFO_STATIC: use static ip.wiz_NetInfo get_info;
static uint8_t ethernet_buf[ETHERNET_BUF_MAX_SIZE] = {0,
};                                 // Send and receive cache
static uint8_t multicast_mac[6]= {0x01,0x00,0x5e,0x01,0x01,0x0b};   // multicast mac address
static uint8_t multicast_ip[4]  = {224, 1, 1, 11};  // multicast ip address
static uint16_t multicast_port  = 30000; // multicast port
static uint8_t dhcp_get_ip_flag = 0;         // Define the DHCP acquisition flagint main()                                                          
{   struct repeating_timer timer; // Define the timer structure/* MCU init */stdio_init_all();     // Initialize the main control peripheralwizchip_initialize(); // Initialize the chip interface/*dhcp init*/DHCP_init(SOCKET_ID, ethernet_buf);                                   // DHCP initializationadd_repeating_timer_ms(1000, repeating_timer_callback, NULL, &timer); // Add DHCP 1s Tick Timer handlerprintf("wiznet chip tcp server example.\r\n");network_init(&net_info); // Configuring Network Informationprint_network_information(&get_info);   // Read back the configuration information and print itwhile(true){multicast_loopback(SOCKET_ID, ethernet_buf, multicast_mac, multicast_ip, multicast_port);   // Multicast loopback test}
}

  跳进回环测试里面看下其具体实现: 该函数有这几个参数,socket端口号、数据收发缓存、组播MAC地址、组播IP地址、组播端口;根据实际需要填入参数。其整体通过一个switch状态机轮询socket状态,根据不同进行相应的处理,依次完成了初始化、打开socket端口、收到数据后回传的操作 ;其中本地端口直接在函数内初始化了。如下所示:

/*** @brief   UDP Multicast loopback test* @param   sn: Socket Number* @param   buf: Data sending and receiving cache* @param   multicast_mac: Multicast MAC address* @param   multicast_ip:  Multicast IP address* @param   multicast_port:Multicast port* @return  value for SOCK_ERRORs,return 1:no error
*/
int32_t multicast_loopback(uint8_t sn, uint8_t* buf, uint8_t* multicast_mac, uint8_t* multicast_ip, uint16_t multicast_port)
{int32_t  ret;uint16_t size, sentsize;uint8_t destip[4];uint16_t destport, port=50000;switch(getSn_SR(sn)){case SOCK_UDP :if((size = getSn_RX_RSR(sn)) > 0){if(size > DATA_BUF_SIZE) size = DATA_BUF_SIZE;ret = recvfrom(sn, buf, size, destip, (uint16_t*)&destport);buf[ret]=0x00;printf("recv from [%d.%d.%d.%d][%d]: %s\r\n",destip[0],destip[1],destip[2],destip[3],destport,buf);if(ret <= 0){
#ifdef _MULTICAST_DEBUG_printf("%d: recvfrom error. %ld\r\n",sn,ret);
#endifreturn ret;}size = (uint16_t) ret;sentsize = 0;while(sentsize != size){ret = sendto(sn, buf+sentsize, size-sentsize, destip, destport);if(ret < 0){
#ifdef _MULTICAST_DEBUG_printf("%d: sendto error. %ld\r\n",sn,ret);
#endifreturn ret;}sentsize += ret; // Don't care SOCKERR_BUSY, because it is zero.}}break;case SOCK_CLOSED:
#ifdef _MULTICAST_DEBUG_printf("%d:Multicast Loopback start\r\n",sn);
#endifsetSn_DIPR(0, multicast_ip);setSn_DPORT(0, multicast_port);setSn_DHAR(0, multicast_mac);if((ret = socket(sn, Sn_MR_UDP, port, Sn_MR_MULTI)) != sn)return ret;
#ifdef _MULTICAST_DEBUG_printf("%d:Opened, UDP Multicast Socket\r\n", sn);printf("%d:Multicast Group IP - %d.%d.%d.%d\r\n", sn, multicast_ip[0], multicast_ip[1], multicast_ip[2], multicast_ip[3]);printf("%d:Multicast Group Port - %d\r\n", sn, multicast_port);
#endifbreak;default :break;}return 1;
}

4.5 测试现象

​ 硬件连接无误后,编译烧录程序(具体可参考第一章节),打开WIZ UartTool,选择对应的COM口,填入参数:波特率115200,8位数据位,1位停止位,无校验位,无流控,填完参数后点击open打开,观察串口打印的信息以获取设备运行状态;打开网络调试工具SocketTester,在左列填入参数:选择UDP模式,本地IP填入电脑IP,端口随机,但尽量不要使用特殊端口;下边的远程IP和端口填入对应的组播IP和端口,然后直接发送信息,可以看到数据成功发送后串口这边收到的来自组播成员(192.168.1.2:8080)的数据,也即设备作为组播成员成功收到了电脑发给播组的数据;如下图所示:

在这里插入图片描述

为了更直接的了解其交互过程,这里通过wireshark抓包工具抓包分析,每次向播组发送数据后,设备作为播组成员收到后都进行了回传,如下图所示:
在这里插入图片描述

5. 注意事项

  • 组播MAC地址和组播IP地址的映射关系
  • 如果想用WIZnet的W5500来实现本章的示例,我们只需修改两个地方即可:
  1. 在library/ioLibrary_Driver/Ethernet/下找到wizchip_conf.h这个头文件,将_WIZCHIP_ 宏定义修改为W5500。

  2. 在library下找到CMakeLists.txt文件,将COMPILE_SEL设置为ON即可,OFF为W5100S,ON为W5500。

    6. 相关链接

    WIZnet官网

    WIZnet官方库链接

    本章例程链接

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/126073.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【咕咕送书 | 第5期】国家数据局正式揭牌,数据专业融合型人才迎来发展良机

&#x1f3ac; 鸽芷咕&#xff1a;个人主页 &#x1f525; 个人专栏:《粉丝福利》 《C语言进阶篇》 ⛺️生活的理想&#xff0c;就是为了理想的生活! 文章目录 ⛳️ 写在前面参与规则引入《数据要素安全流通》《Python数据挖掘&#xff1a;入门、进阶与实用案例分析》《数据保…

身份证OCR:变革的触手,掀起识别的革命

身份证OCR识别技术&#xff08;Optical Character Recognition&#xff09;是一项将身份证上的文字信息转化为可编辑、搜索、存储、分享的电子文本的技术。它的发展与信息技术和身份认证需求的不断演进密切相关。以下将简要介绍身份证OCR识别技术的历史以及兴起背景。 OCR识别…

LLaMA-Adapter源码解析

LLaMA-Adapter源码解析 伪代码 def transformer_block_with_llama_adapter(x, gating_factor, soft_prompt):residual xy zero_init_attention(soft_prompt, x) # llama-adapter: prepend prefixx self_attention(x)x x gating_factor * y # llama-adapter: apply zero_init…

Python中的random模块,随机性的神奇世界

随机性在计算机编程和数据科学中扮演着至关重要的角色。Python中的random模块提供了丰富的工具和函数&#xff0c;帮助我们生成随机数、操作随机序列&#xff0c;以及模拟随机性事件。 在本文中&#xff0c;我们将分享random模块&#xff0c;了解它的基本用法、功能和应用领域…

vim

简介 vim是一款多模式的文本编辑器&#xff0c;vim里面还有很多子命令&#xff0c;来进行代码的编写操作 常用模式图 命令模式 光标移动 shif $ 光标定义到当前行的最右侧结尾 shift ^ 光标定义到当前行的最左侧开头 shift g 光标定位到文本最末尾…

微信小程序去掉Button自带边框

前言 微信button自带边框 去掉边框后效果 实现 html代码 <view><button class"contactBtn" open-type"contact" contact"handleContact"session-from"sessionFrom">意见反馈</button> </view>css代码 …

Tiny Plane固定翼小飞机机身硬件整理开源

简介 Tiny Plane是一个固定翼小飞机飞控项目&#xff0c;旨在DIY一款操控良好、飞行时间长、可玩性高的固定翼小飞机。目前基于48cm翼展手抛机进行改装&#xff0c;飞控采用ESP32-C3。 特性 飞控主要特性&#xff1a; 单串锂电池供电&#xff0c;最大工作电压5.5V电源电压、…

吴恩达《机器学习》2-1:模型描述

一、单变量线性回归 单变量线性回归是监督学习中的一种算法&#xff0c;通常用于解决回归问题。在单变量线性回归中&#xff0c;我们有一个训练数据集&#xff0c;其中包括一组输入特征&#xff08;通常表示为&#x1d465;&#xff09;和相应的输出目标&#xff08;通常表示为…

Java项目之网络考试系统

视频教程&#xff1a; 01-创建数据库_哔哩哔哩_bilibili 源码下载&#xff1a;百度网盘 请输入提取码 准备工作 创建数据库配置IDEA后端导入前端 前言&#xff1a; 把代码掰开写进博客里&#xff0c;主要是让自己在整理笔记的过程中&#xff0c;多去思考完成这个功能的核心…

图数据库Neo4j概念、应用场景、安装及CQL的使用

一、图数据库概念 引用Seth Godin的说法&#xff0c;企业需要摒弃仅仅收集数据点的做法&#xff0c;开始着手建立数据之间的关联关系。数据点之间的关系甚至比单个点本身更为重要。 传统的**关系数据库管理系统(RDBMS)**并不擅长处理数据之间的关系&#xff0c;那些表状数据模…

Docker之docker-compose(介绍,安装及入门示例)

文章目录 一、docker-compose介绍Compose 中有两个重要的概念&#xff1a; 二、docker-compose安装三、docker-compose简单示例参考网址&#xff1a; 一、docker-compose介绍 Compose 项目是 Docker 官方的开源项目&#xff0c;负责实现对 Docker 容器集群的快速编排。 Compo…

【机器学习】三、特征选择与稀疏学习

特征选择和稀疏学习 子集搜索与评价 对象都有很多属性来描述&#xff0c;属性也称为特征&#xff08;feature&#xff09;&#xff0c;用于刻画对象的某一个特性。对一个学习任务而言&#xff0c;有些属性是关键有用的&#xff0c;而有些属性则可能不必要纳入训练数据。对当前学…

通用开源自动化测试框架 - Robot Framework

一、什么是 Robot Framework&#xff1f; 1. Robot Framework 的历史由来 Robot Framework是一种通用的自动化测试框架&#xff0c;最早由Pekka Klrck在2005年开发&#xff0c;并由Nokia Networks作为内部工具使用。后来&#xff0c;该项目以开源形式发布&#xff0c;并得到了…

vue+vant图片压缩后上传

vuevant图片压缩后上传 vue文件写入 <template><div class"home"><van-field input-align"left"><template #input><van-uploaderv-model"fileList.file":after-read"afterRead":max-count"5":…

中国各城市土地利用类型(城市功能)矢量数据集(shp)

中国各城市土地利用类型(城市功能)数据集 时间:2018年 全国范围的城市用地类型数据(居住/商业/交通用地等共计11类) 分类:居住用地、商业用地、工业用地、医疗设施用地、体育文化设施用地、交通场站用地、绿地等用地类型 含城市编码、一级分类5个、二级分类11个 数据按…

纷享销客BI,助力企业激活数据价值,科学企业决策

10月25日上午&#xff0c;国家数据局正式挂牌成立&#xff0c;这标志着我国数字经济发展将进入新的发展阶段&#xff0c;也将有力促进数据要素技术创新、开发利用和有效治理&#xff0c;以数据强国支撑数字中国的建设。伴随数据作为企业新的生产要素的意义不断凸显&#xff0c;…

SpringBoot----自定义Start(自定义依赖)

一&#xff0c;为什么要定义Start 向阿里云OSS如果我们要引入的话很麻烦&#xff0c;所以我们可以自定义一些组件&#xff0c; 然后我们只需要在pom文件中引入对应的坐标就可以 二&#xff0c;怎么定义&#xff08;以阿里云OSS为例&#xff09; 1&#xff0c; 定义两个组件模块…

pytorch打印模型结构和参数

两种方式 当我们使用pytorch进行模型训练或测试时&#xff0c;有时候希望能知道模型每一层分别是什么&#xff0c;具有怎样的参数。此时我们可以将模型打印出来&#xff0c;输出每一层的名字、类型、参数等。 常用的命令行打印模型结构的方法有两种&#xff1a; 一是直接prin…

2023 CSP-J题解

T1 小苹果 题目描述 理论分析 对于第一问&#xff0c;我们按照题意模拟每天取走的是多少个苹果即可。由于每天可以取走原来的,数据范围没次会降低到&#xff0c;也就是说这样的过程的时间复杂度可以用下式表示&#xff1a; 对于本题的数据范围n<1e9&#xff0c;这个时间复杂…

二叉树问题——平衡二叉树问题

摘要 本博文主要介绍平衡二叉树问题包括&#xff0c;二叉树的高度差&#xff0c;是否为平衡二叉树&#xff0c;有序链表转二叉搜索树&#xff0c;将二叉搜索树变平衡等。 一、平衡二叉树详解 1.1 判断二叉树是否平衡 /*** Definition for a binary tree node.* public class…