10、电路综合-基于简化实频的宽带匹配电路设计方法

10、电路综合-基于简化实频的宽带匹配电路设计方法

网络综合和简化实频理论学习概述中的1-9介绍了SRFT的一些基本概念和实验方法,终于走到了SRFT的另一个究极用途,宽带匹配电路的设计。

1、之前的一些回顾与总结

之前也给出了一些电路综合的案例,但是这些案例必须基于解析函数形式的S参数,在更为一般的情况下我们难以基于此去完成设计,我们往往需要基于要匹配的阻抗去设计实际的电路:

5、电路综合-超酷-基于S11参数直接综合出微带线电路图
基于给定的S11参数的表达式综合出其对应的微带电路图,注意此处的S11参数表达式需要是解析形式(即要是函数表达式的形式)

6、电路综合-基于简化实频的SRFT微带线切比雪夫低通滤波器设计
基于切比雪夫函数进行电路综合,基于目标参数直接进行电路综合得到其对应的微带电路,给出了对应的理论与操作步骤(附Matlab代码)

7、电路综合-基于简化实频的SRFT微带线巴特沃兹低通滤波器设计
基于巴特沃斯函数进行电路综合,基于目标参数直接进行电路综合得到其对应的微带电路,给出了对应的理论与操作步骤(附Matlab代码)

8、电路综合-基于简化实频的SRFT微带线的带通滤波器设计
基于巴特沃斯与切比雪夫函数进行电路综合,基于目标参数直接进行电路综合得到其对应的带通的微带电路,给出了对应的理论与操作步骤(附Matlab代码)

2、简化实频的宽带匹配电路设计方法理论

阻抗匹配其实就是S11电路的匹配,给定需要匹配的阻抗数值去设计微带电路,其实就是给定了部分频点的S11参数去综合出电路图。我们唯一需要的就是根据部分频点的S11参数去拟合S11在理查德域的解析表达式。

这个拟合过程也可以看为一个优化过程,是为了使得解析表达式尽可能的接近已知的S11参数。其基本过程和9、电路综合-基于简化实频的任意幅频响应的微带电路设计一致,在此不过多赘述。

3、简化实频的宽带匹配电路Matlab代码与简单验证

案例:将10欧姆在2.1-5.1GHz内匹配至50欧姆,在代码中设置几个离散的频率点以及目标阻抗即可:

% 设置要控制的频点
f_target=[2.1 2.7 3.3 3.9 4.5 5.1]*1e9;
% 设置要控制的对应阻抗,进行归一化
z_target=[10 10 10 10 10 10]/Z0;

代码的主题如下所示(详细代码从最上方链接下载):

clear
clc
close all
global Z0
global freq_solve% 使用1GHZ的微带线,最高控制到3GHz,特性阻抗50欧姆
f=4e9;
fe=4e9;
Z0=50;
%使用k个级联微带线进行设计
k=6;%在DC处无零点
q=0;
%初始化H的系数
h=-1.*ones(1,k);
we=2*pi*fe;
tau=pi/2/we;
%光速
c=299792458;
ele_l=360*tau*f;
l=ele_l/360*c/f;
disp(['此处使用在',num2str(f/1e9),'GHz下电长度为',num2str(ele_l),'°的微带线进行实现']);% 设置要控制的频点
f_target=[2.1 2.7 3.3 3.9 4.5 5.1]*1e9;
% 设置要控制的对应阻抗,进行归一化
z_target=[10 10 10 10 10 10]/Z0;
% 转化为S11参数
s11_target=(z_target-1)./(z_target+1);% 定义优化变量
x0=h;
% Call optimization with no transformer
A = [];
b = [];
Aeq = [];
beq = [];
lb = [];
ub = [];
% opt=optimset('Display','off');
% warning('off');
[x,fval] = fmincon(@(x)objective_Z(x,fe,q,k,l,f_target,s11_target),x0,A,b,Aeq,beq,lb,ub,[]);
disp(['error is      ',num2str(fval)])
% warning('on');h=x;
h(k+1)=0;
% 基于优化得到的h计算其他参数
[G,H,F,g]=SRFT_htoG(h,q,k);
tau=pi/2/we;%求解频率范围,单位GHz
f_start=2;
f_stop=5;
f_step=0.1;
%求解范围
freq_solve=[f_start:f_step:f_stop]*1e9;%计算不同频率下的相移常数beta
beta=2*pi*freq_solve/c;
%转换到lamda域
lamda=1j*tan(beta*l);num_h=0;
for i=1:1:length(h)num_h=num_h+h(i).*lamda.^(length(h)-i);
end
num_g=0;
for i=1:1:length(g)num_g=num_g+g(i).*lamda.^(length(g)-i);
end
num_f=(1-lamda.^2).^(k/2);S11=num_h./num_g;SimthChart(3)=figure(3);
wxp_smithplot=smithplot(S11,'GridType','Z');
legend(['第',num2str(1),'次谐波']);
dcm_obj = datacursormode(SimthChart(3));
set(dcm_obj,'UpdateFcn',@myupdatefcn_smith1);
wxp_smithplot.Marker = {'+'};% 综合得到所需的微带电路
[Z_imp]=UE_sentez(h,g);
Z_imp=Z_imp.*Z0;
disp(Z_imp)

运行得到的结果如下所示:
在这里插入图片描述
从Smith圆图可见匹配较好,误差较小。构建ADS电路图,源阻抗设置为10欧姆:
在这里插入图片描述
ADS的仿真结果如下所示,可见匹配完美,设计合理:
在这里插入图片描述

4、简化实频功率放大器匹配设计

简化实频在功率放大器的设计中非常有用,对于功率放大器的匹配电路来说,不同频点的最佳频率是在不同阻抗点的,例如CGH40006S的最佳源阻抗与负载阻抗如下所示:
在这里插入图片描述
基于如上的最佳阻抗值进行SRFT电路设计,设计代码如下(源匹配和负载匹配可以通过修改注释来改变,提供了两种优化方法,提供修改注释来切换):

clear
clc
close all
global Z0
global freq_solve% 使用1GHZ的微带线,最高控制到3GHz,特性阻抗50欧姆
f=4e9;
fe=4e9;
Z0=50;
%使用k个级联微带线进行设计
k=5;%在DC处无零点
q=0;
%初始化H的系数
h=-1.*ones(1,k);
we=2*pi*fe;
tau=pi/2/we;
%光速
c=299792458;
ele_l=360*tau*f;
l=ele_l/360*c/f;
disp(['此处使用在',num2str(f/1e9),'GHz下电长度为',num2str(ele_l),'°的微带线进行实现']);% 设置要控制的频点,源匹配
f_target=[2.1 2.7 3.3 3.9 4.5 5.1]*1e9;
% 设置要控制的对应阻抗,进行归一化
z_target=[20-1j*12 20-1j*8 18-1j*4 7-1j*3 6-1j*7 10-1j*10]/Z0;% % 设置要控制的频点,负载匹配
% f_target=[2.1 2.7 3.3 3.9 4.5 5.1]*1e9;
% % 设置要控制的对应阻抗,进行归一化
% z_target=[28+1j*14 26+1j*15 20+1j*13 19+1j*9 16+1j*7 15+1j*5.5]/Z0;% % 设置要控制的频点
% f_target=[2.1 2.7 3.3 3.9 4.5 5.1]*1e9;
% % 设置要控制的对应阻抗,进行归一化
% z_target=[10 10 10 10 10 10]/Z0;% 转化为S11参数
s11_target=(z_target-1)./(z_target+1);%优化方法二选一
OPTIONS=optimset('MaxFunEvals',20000,'MaxIter',50000,'Algorithm','levenberg-marquardt');
x=lsqnonlin('objective_Z',x0,[],[],OPTIONS,fe,q,k,l,f_target,s11_target);%优化方法二选一
% A = [];
% b = [];
% Aeq = [];
% beq = [];
% lb = [];
% ub = [];
% % opt=optimset('Display','off');
% % warning('off');
% [x,fval] = fmincon(@(x)objective_Z(x,fe,q,k,l,f_target,s11_target),x0,A,b,Aeq,beq,lb,ub,[]);
% disp(['error is      ',num2str(fval)])
% % warning('on');h=x;
h(k+1)=0;
% 基于优化得到的h计算其他参数
[G,H,F,g]=SRFT_htoG(h,q,k);
tau=pi/2/we;%求解频率范围,单位GHz
f_start=2;
f_stop=5;
f_step=0.1;
%求解范围
freq_solve=[f_start:f_step:f_stop]*1e9;%计算不同频率下的相移常数beta
beta=2*pi*freq_solve/c;
%转换到lamda域
lamda=1j*tan(beta*l);
num_h=0;
for i=1:1:length(h)num_h=num_h+h(i).*lamda.^(length(h)-i);
end
num_g=0;
for i=1:1:length(g)num_g=num_g+g(i).*lamda.^(length(g)-i);
end
num_f=(1-lamda.^2).^(k/2);
S11=num_h./num_g;
SimthChart(3)=figure(3);
wxp_smithplot=smithplot(S11,'GridType','Z');
legend(['第',num2str(1),'次谐波']);
dcm_obj = datacursormode(SimthChart(3));
set(dcm_obj,'UpdateFcn',@myupdatefcn_smith1);
wxp_smithplot.Marker = {'+'};
% %------------------------------------
% 综合得到所需的微带电路[Z_imp]=UE_sentez(h,g);
Z_imp=Z_imp.*Z0;
disp(Z_imp)

运行结果如下所示:
在这里插入图片描述
构建输入匹配的ADS仿真电路图,注意此处是输入匹配,需要将微带线的输入输出顺序翻转(第一段微带线是49.6156欧姆,以此类推):
在这里插入图片描述
上图,1端口接的是50欧姆端口,2端口连接晶体管的栅极,仿真观察S22来判断其匹配结果,匹配效果很好:
在这里插入图片描述

上面设计的是输入匹配,下面进行输出匹配电路的设计,同样在上面代码的基础上修改注释,再进行综合:
在这里插入图片描述
匹配效果一般,基本满足要求,实际此处也需要考虑过拟合的问题,在此不额外赘述了。基于此结果构建输出匹配电路:
在这里插入图片描述
1端口接晶体管的漏极,2端口接50欧姆端口,观察S11的仿真结果如下所示,和理论一致:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/125167.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

实时定位和配送追踪:开发万岳同城外卖APP的关键技术特性

随着生活节奏的不断加快,外卖服务已经成为许多人日常生活中不可或缺的一部分。无论是工作日的午餐,还是周末的家庭聚会,外卖APP已经成为满足各种美食需求的首选方式。然而,同城外卖APP的成功不仅仅取决于美味的食物选择&#xff0…

leetCode 2578. 最小和分割 + 排序 + 贪心 + 奇偶分组(构造最优解)

2578. 最小和分割 - 力扣(LeetCode) 给你一个正整数 num ,请你将它分割成两个非负整数 num1 和 num2 ,满足: num1 和 num2 直接连起来,得到 num 各数位的一个排列。 换句话说,num1 和 num2 中所…

【零基础抓包】Fiddler超详细教学(一)

​Fiddler 1、什么是 Fiddler? Fiddler 是一个 HTTP 协议调试代理工具,它能够记录并检查所有你的电脑和互联网之间的 HTTP 通讯。Fiddler 提供了电脑端、移动端的抓包、包括 http 协议和 https 协议都可以捕获到报文并进行分析;可以设置断点调试、截取…

【脑机接口 论文】利用脑机接口帮助ALS患者恢复对家用设备的控制science

英文题目 中文题目 稳定的语音BCI解码使ALS患者在3个月内无需重新校准即可进行控制论文下载:算法程序下载:摘要1 项目介绍2 方法2.1实时神经解码2.2算法手术植入:神经解码模型: 数据收集实验2.3稳定的解码器性能超过三个月 3 电极的贡献4 讨论5结论 中文…

python 打印与去除不可见字符 \x00

# 此处不是真实的\x00 被 空格替换了 text "boot_1__normal/ " print(text.strip()"boot_1__normal/") # 打印不可见字符 print(repr(text))>>> False boot_1__normal/\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0…

Python爬虫程序中的504错误:原因、常见场景和解决方法

概述 在编写Python爬虫程序时,我们经常会遇到各种错误和异常。其中,504错误是一种常见的网络错误,它表示网关超时。是指客户端与服务器之间的网关通信过程中,服务器在规定的时间内没有返回响应,导致请求超时。此类错误…

Windows键 + Shift + S 截图图片保存位置

地址 C:\Users\Administrator\AppData\Local\Packages\MicrosoftWindows.Client.CBS_cw5n1h2txyewy\TempState\ScreenClip

reactos 可调试光盘映像

链接:https://pan.baidu.com/s/13M9BZN4IDrWLc3bjnHO79g?pwd0gst 提取码:0gst

多点开花。泛癌+单细胞+免疫+实验,一套组合拳教你拿下11+

今天给同学们分享一篇生信文章“A pan-cancer analysis shows immunoevasive characteristics in NRF2 hyperactive squamous malignancies”,这篇文章于2023年2月27日发表在Redox Biol期刊上,影响因子为11.4。 NRF2通路在各种癌症类型中经常被激活&…

FlinkCDC系列:通过skipped.operations参数选择性处理新增、更新、删除数据

在flinkCDC源数据配置,通过debezium.skipped.operations参数控制,配置需要过滤的 oplog 操作。操作包括 c 表示插入,u 表示更新,d 表示删除。默认情况下,不跳过任何操作,以逗号分隔。配置多个操作&#xff…

【23真题】邮电之首!扩招15倍!专业课难度骤降!

今天分享的是23年北京邮电大学804的信号与系统试题及解析。 本套试卷难度分析:北邮804在22年只招生6人,23年拟招生87人,扩招近15倍!22年北京邮电大学804考研真题,我也发布过,若有需要,戳这里自…

4.2 SSAO算法 屏幕空间环境光遮蔽

一、SSAO介绍 AO 环境光遮蔽,全程Ambient Occlustion,是计算机图形学中的一种着色和渲染技术,模拟光线到达物体能力的粗略的全局方法,描述光线到达物体表面的能力。 SSAO 屏幕空间环境光遮蔽,全程 Screen Space Amb…

20.2 OpenSSL 非对称RSA加解密算法

RSA算法是一种非对称加密算法,由三位数学家Rivest、Shamir和Adleman共同发明,以他们三人的名字首字母命名。RSA算法的安全性基于大数分解问题,即对于一个非常大的合数,将其分解为两个质数的乘积是非常困难的。 RSA算法是一种常用…

我的架构复盘

1、背景 我目前公司研发中心担任软件研发负责人,研发中心分为3组,总共有30多人。研发中心主要开发各类生产辅助工具,比如巡检、安全教育等系统。系统不对外,只在公司内部使用。 就我个人来说,作为研发负责人&#xf…

【C语言_题库】C语言:编写一个程序,输入一组字符串,将字符串中的小写字母转换为大写字母,其它字符不变,并输出。

把键盘输入的一行字符串的小写字母转换成大写字母,其余字符不变,进行输出,直到遇到回车为止。 具体说明 【问题描述】 从键盘输入一行英文字符串,把所有小写字母变成大写字母,其他字母和字符保持不变。 【输入形式】 输入一行字符串,含大小写。 【输出形式】 输出大写字…

考试成绩这样分发

老师们,还在为每次繁琐的成绩查询而头痛?今天我就要给大家带来一个超级实用的教程,让你轻松解决这个问题! 我来介绍一下这个神秘的“成绩查询页面”。别以为它很复杂,其实它就是一个简单的网页,上面会有每个…

详解—数据结构《树和二叉树》

目录 一.树概念及结构 1.1树的概念 1.2树的表示 二.二叉树的概念及结构 2.1概念 2.2二叉树的特点 2.3现实中的二叉树 2.4数据结构中的二叉树 2.5 特殊的二叉树 2.6二叉树的存储结构 2.6.1二叉树的性质 2.6.2 顺序结构 2.6.3链式存储 三. 二叉树的链式结构的遍历 …

美术培训服务预约小程序的作用是什么

线下培训教育机构很多,涉及到的行业及种类很多,美术培训就是其中较为重要的一类,尤其是青少年群体,其拓展度很深,而对商家来说,其主要生源在本地同城,因此品牌宣传和渠道发展、学员赋能很重要。…

AI虚拟主播源码系统 搭建专属自己的直播间+送礼物 功能强大 带完整搭建教程

在互联网的不断发展下,直播行业迅速崛起,成为一种新的信息传播和娱乐形式。越来越多的人开始通过直播平台进行交流、互动和分享。因此,开发一款能够提供高质量、稳定直播服务的平台具有重要的现实意义。 随着人工智能技术的不断进步&#xf…

蓝桥杯每日一题2023.10.29

螺旋折线 - 蓝桥云课 (lanqiao.cn) 题目描述 题目分析 在图中我们可以观察到四个对角线的值均为特殊点&#xff0c;其他的点可以根据这几个 进行偏移量的计算从而进行表示&#xff0c;此题主要是找到规律即可 #include<bits/stdc.h> using namespace std; typedef long…