Kafka设计原理详解

0

Kafka核心总控制器Controller

在Kafka集群中会有一个或者多个broker,其中有一个broker会被选举为控制器(Kafka Controller),它负责管理整个集群中所有分区和副本的状态。

  • 当某个分区的leader副本出现故障时,由控制器负责为该分区选举新的leader副本。
  • 当检测到某个分区的ISR集合发生变化时,由控制器负责通知所有broker更新其元数据信息。
  • 当使用kafka-topics.sh脚本为某个topic增加分区数量时,同样还是由控制器负责让新分区被其他节点感知到。

Controller选举机制

在kafka集群启动的时候,会自动选举一台broker作为controller来管理整个集群,选举的过程是集群中每个broker都会尝试在zookeeper上创建一个 /controller 临时节点,zookeeper会保证有且仅有一个broker能创建成功,这个broker就会成为集群的总控器controller。

 当这个controller角色的broker宕机了,此时zookeeper临时节点会消失,集群里其他broker会一直监听这个临时节点,发现临时节点消失了,就竞争再次创建临时节点,就是我们上面说的选举机制,zookeeper又会保证有一个broker成为新的controller。

具备控制器身份的broker需要比其他普通的broker多一份职责,具体细节如下:

  1. 监听broker相关的变化。为Zookeeper中的/brokers/ids/节点添加BrokerChangeListener,用来处理broker增减的变化。
  2. 监听topic相关的变化。为Zookeeper中的/brokers/topics节点添加TopicChangeListener,用来处理topic增减的变化;为Zookeeper中的/admin/delete_topics节点添加TopicDeletionListener,用来处理删除topic的动作。
  3. 从Zookeeper中读取获取当前所有与topic、partition以及broker有关的信息并进行相应的管理。对于所有topic所对应的Zookeeper中的/brokers/topics/[topic]节点添加PartitionModificationsListener,用来监听topic中的分区分配变化。
  4. 更新集群的元数据信息,同步到其他普通的broker节点中。

Partition副本选举Leader机制

controller感知到分区leader所在的broker挂了(controller监听了很多zk节点可以感知到broker存活),controller会从ISR列表(参数unclean.leader.election.enable=false的前提下)里挑第一个broker作为leader(第一个broker最先放进ISR列表,可能是同步数据最多的副本),如果参数unclean.leader.election.enable为true,代表在ISR列表里所有副本都挂了的时候可以在ISR列表以外的副本中选leader,这种设置,可以提高可用性,但是选出的新leader有可能数据少很多。

副本进入ISR列表有两个条件:

  1. 副本节点不能产生网络分区,必须能与zookeeper保持会话以及跟leader副本网络连通
  2. 副本能复制leader上的所有写操作,并且不能落后太多。(与leader副本同步滞后的副本,是由 replica.lag.time.max.ms 配置决定的,超过这个时间都没有跟leader同步过的一次的副本会被移出ISR列表)

消费者消费消息的offset记录机制

每个consumer会定期将自己消费分区的offset提交给kafka内部topic:__consumer_offsets,提交过去的时候,key是consumerGroupId+topic+分区号,value就是当前offset的值,kafka会定期清理topic里的消息,最后就保留最新的那条数据

 因为__consumer_offsets可能会接收高并发的请求,kafka默认给其分配50个分区(可以通过offsets.topic.num.partitions设置),这样可以通过加机器的方式抗大并发。

通过如下公式可以选出consumer消费的offset要提交到__consumer_offsets的哪个分区

公式:hash(consumerGroupId) % __consumer_offsets主题的分区数

消费者Rebalance机制

rebalance就是说如果消费组里的消费者数量有变化或消费的分区数有变化,kafka会重新分配消费者消费分区的关系。比如consumer group中某个消费者挂了,此时会自动把分配给他的分区交给其他的消费者,如果他又重启了,那么又会把一些分区重新交还给他。

注意:rebalance只针对subscribe这种不指定分区消费的情况,如果通过assign这种消费方式指定了分区,kafka不会进行rebanlance。

如下情况可能会触发消费者rebalance

  1. 消费组里的consumer增加或减少了
  2. 动态给topic增加了分区
  3. 消费组订阅了更多的topic

rebalance过程中,消费者无法从kafka消费消息,这对kafka的TPS会有影响,如果kafka集群内节点较多,比如数百个,那重平衡可能会耗时极多,所以应尽量避免在系统高峰期的重平衡发生。

消费者Rebalance分区分配策略:

主要有三种rebalance的策略:range、round-robin、sticky。

Kafka 提供了消费者客户端参数partition.assignment.strategy 来设置消费者与订阅主题之间的分区分配策略。默认情况为range分配策略。

假设一个主题有10个分区(0-9),现在有三个consumer消费:

range策略就是按照分区序号排序,假设 n=分区数/消费者数量 = 3, m=分区数%消费者数量 = 1,那么前 m 个消费者每个分配 n+1 个分区,后面的(消费者数量-m )个消费者每个分配 n 个分区。

比如分区0~3给一个consumer,分区4~6给一个consumer,分区7~9给一个consumer。

round-robin策略就是轮询分配,比如分区0、3、6、9给一个consumer,分区1、4、7给一个consumer,分区2、5、8给一个consumer

sticky策略初始时分配策略与round-robin类似,但是在rebalance的时候,需要保证如下两个原则。

1)分区的分配要尽可能均匀 。

2)分区的分配尽可能与上次分配的保持相同。

当两者发生冲突时,第一个目标优先于第二个目标 。这样可以最大程度维持原来的分区分配的策略。

比如对于第一种range情况的分配,如果第三个consumer挂了,那么重新用sticky策略分配的结果如下:

consumer1除了原有的0~3,会再分配一个7

consumer2除了原有的4~6,会再分配8和9

Rebalance过程如下

当有消费者加入消费组时,消费者、消费组及组协调器之间会经历以下几个阶段。

0

第一阶段:选择组协调器

组协调器GroupCoordinator:每个consumer group都会选择一个broker作为自己的组协调器coordinator,负责监控这个消费组里的所有消费者的心跳,以及判断是否宕机,然后开启消费者rebalance。

consumer group中的每个consumer启动时会向kafka集群中的某个节点发送 FindCoordinatorRequest 请求来查找对应的组协调器GroupCoordinator,并跟其建立网络连接。

组协调器选择方式:

consumer消费的offset要提交到__consumer_offsets的哪个分区,这个分区leader对应的broker就是这个consumer group的coordinator

第二阶段:加入消费组JOIN GROUP

在成功找到消费组所对应的 GroupCoordinator 之后就进入加入消费组的阶段,在此阶段的消费者会向 GroupCoordinator 发送 JoinGroupRequest 请求,并处理响应。然后GroupCoordinator 从一个consumer group中选择第一个加入group的consumer作为leader(消费组协调器),把consumer group情况发送给这个leader,接着这个leader会负责制定分区方案。

第三阶段( SYNC GROUP)

consumer leader通过给GroupCoordinator发送SyncGroupRequest,接着GroupCoordinator就把分区方案下发给各个consumer,他们会根据指定分区的leader broker进行网络连接以及消息消费。

producer发布消息机制剖析

1、写入方式

producer 采用 push 模式将消息发布到 broker,每条消息都被 append 到 patition 中,属于顺序写磁盘(顺序写磁盘效率比随机写内存要高,保障 kafka 吞吐率)。

2、消息路由

producer 发送消息到 broker 时,会根据分区算法选择将其存储到哪一个 partition。其路由机制为:

1. 指定了 patition,则直接使用; 2. 未指定 patition 但指定 key,通过对 key 的 value 进行hash 选出一个 patition 3. patition 和 key 都未指定,使用轮询选出一个 patition。

3、写入流程

0

1. producer 先从 zookeeper 的 "/brokers/.../state" 节点找到该 partition 的 leader 2. producer 将消息发送给该 leader 3. leader 将消息写入本地 log 4. followers 从 leader pull 消息,写入本地 log 后 向leader 发送 ACK 5. leader 收到所有 ISR 中的 replica 的 ACK 后,增加 HW(high watermark,最后 commit 的 offset) 并向 producer 发送 ACK

HW与LEO详解

HW俗称高水位,HighWatermark的缩写,取一个partition对应的ISR中最小的LEO(log-end-offset)作为HW,consumer最多只能消费到HW所在的位置。另外每个replica都有HW,leader和follower各自负责更新自己的HW的状态。对于leader新写入的消息,consumer不能立刻消费,leader会等待该消息被所有ISR中的replicas同步后更新HW,此时消息才能被consumer消费。这样就保证了如果leader所在的broker失效,该消息仍然可以从新选举的leader中获取。对于来自内部broker的读取请求,没有HW的限制。

下图详细的说明了当producer生产消息至broker后,ISR以及HW和LEO的流转过程:

0

由此可见,Kafka的复制机制既不是完全的同步复制,也不是单纯的异步复制。事实上,同步复制要求所有能工作的follower都复制完,这条消息才会被commit,这种复制方式极大的影响了吞吐率。而异步复制方式下,follower异步的从leader复制数据,数据只要被leader写入log就被认为已经commit,这种情况下如果follower都还没有复制完,落后于leader时,突然leader宕机,则会丢失数据。而Kafka的这种使用ISR的方式则很好的均衡了确保数据不丢失以及吞吐率。再回顾下消息发送端对发出消息持久化机制参数acks的设置,我们结合HW和LEO来看下acks=1的情况

结合HW和LEO看下 acks=1的情况

0

日志分段存储

Kafka 一个分区的消息数据对应存储在一个文件夹下,以topic名称+分区号命名,消息在分区内是分段(segment)存储,每个段的消息都存储在不一样的log文件里,这种特性方便old segment file快速被删除,kafka规定了一个段位的 log 文件最大为 1G,做这个限制目的是为了方便把 log 文件加载到内存去操作:

# 部分消息的offset索引文件,kafka每次往分区发4K(可配置)消息就会记录一条当前消息的offset到index文件,
# 如果要定位消息的offset会先在这个文件里快速定位,再去log文件里找具体消息
00000000000000000000.index
# 消息存储文件,主要存offset和消息体
00000000000000000000.log
# 消息的发送时间索引文件,kafka每次往分区发4K(可配置)消息就会记录一条当前消息的发送时间戳与对应的offset到timeindex文件,
# 如果需要按照时间来定位消息的offset,会先在这个文件里查找
00000000000000000000.timeindex00000000000005367851.index
00000000000005367851.log
00000000000005367851.timeindex00000000000009936472.index
00000000000009936472.log
00000000000009936472.timeindex

这个 9936472 之类的数字,就是代表了这个日志段文件里包含的起始 Offset,也就说明这个分区里至少都写入了接近 1000 万条数据了。

Kafka Broker 有一个参数,log.segment.bytes,限定了每个日志段文件的大小,最大就是 1GB。

一个日志段文件满了,就自动开一个新的日志段文件来写入,避免单个文件过大,影响文件的读写性能,这个过程叫做 log rolling,正在被写入的那个日志段文件,叫做 active log segment。

最后附一张zookeeper节点数据图:

0

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/124886.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Leetcode刷题详解——下降路径最小和

1. 题目链接:931. 下降路径最小和 2. 题目描述: 给你一个 n x n 的 方形 整数数组 matrix ,请你找出并返回通过 matrix 的下降路径 的 最小和 。 下降路径 可以从第一行中的任何元素开始,并从每一行中选择一个元素。在下一行选择…

SpringBoot集成与应用Neo4j

文章目录 前言集成使用定义实体配置定义Repository查询方法方式一:Query方式二:Cypher语法构建器方式三:Example条件构建器方式四:DSL语法 自定义方法自定义接口继承自定义接口实现自定义接口neo4jTemplateNeo4jClient 自定义抽象…

Visual Studio(VS)C++项目 管理第三方依赖库和目录设置

发现很多程序员存在这种做法:把项目依赖的第三方库的lib和dll放在项目目录下,或者复制到输出目录,因为每种配置都有不同的输出目录,所以要复制多份(至少包括Debug和Release两个输出目录),这些做…

MySQL -- 表的增删查改

MySQL – 表的增删查改 文章目录 MySQL -- 表的增删查改一、Create创建1.插入数据2.插入否则更新3.替换 二、Retrieve查找1.select列1.1.全列查询1.2.指定列查询1.3.查询字段为表达式1.4.为查询结果指定别名1.5.结果去重 2.where条件2.1.英语不及格的同学&#xff08;英语<6…

MA网络下,静态路由仅配出接口,不配下一跳是否可行

在MA网络模式下&#xff0c;静态路由只配置出接口&#xff0c;不配置下一跳地址是否可行 如下拓扑图&#xff1a; 如图所示&#xff0c;在R1上配置一条去往4.4.4.4的静态路由&#xff0c;此时如果静态路由只配置出接口&#xff0c;不配置下一跳地址&#xff1a; ip route-stat…

山河CTF(部分write up)

MISC [WEEK1]签到题 下载题目并打开&#xff1a; base128编码&#xff1a; Wm14aFozdDBhR2x6WDJselgyWnNZV2Q5 因为是base128编码&#xff0c;所以通过两次base64解码&#xff0c;即可得出flag 爆出flag&#xff1a; flag{this_is_flag} 总结&#xff1a; 这道签到题主要考察了…

Linux MeterSphere测试平台远程访问你不会?来试试这篇文章

&#x1f3ac; 鸽芷咕&#xff1a;个人主页 &#x1f525; 个人专栏:《粉丝福利》 《C语言进阶篇》 ⛺️生活的理想&#xff0c;就是为了理想的生活! 文章目录 前言1. 安装MeterSphere2. 本地访问MeterSphere3. 安装 cpolar内网穿透软件4. 配置MeterSphere公网访问地址5. 公网…

[C++]命名空间等——喵喵要吃C嘎嘎

希望你开心&#xff0c;希望你健康&#xff0c;希望你幸福&#xff0c;希望你点赞&#xff01; 最后的最后&#xff0c;关注喵&#xff0c;关注喵&#xff0c;关注喵&#xff0c;大大会看到更多有趣的博客哦&#xff01;&#xff01;&#xff01; 喵喵喵&#xff0c;你对我真的…

目标检测 YOLOv5 预训练模型下载方法

目标检测 YOLOv5 预训练模型下载方法 flyfish https://github.com/ultralytics/yolov5 https://github.com/ultralytics/yolov5/releases 可以选择自己需要的版本和不同任务类型的模型 后缀名是pt

MongoDB的安装

MongoDB的安装 1、Windows下MongoDB的安装及配置 1.1 下载Mongodb安装包 下载地址&#xff1a; https://www.mongodb.com/try/download http://www.mongodb.org/dl/win32 MongoDB Windows系统64位下载地址&#xff1a;http://www.mongodb.org/dl/win32/x86_64 MongoDB W…

python采集电商jd app商品详情数据(2023-10-30)

一、技术要点&#xff1a; 1、cookie可以从手机app端用charles抓包获取&#xff1b; 2、无需安装nodejs&#xff0c;纯python源码&#xff1b; 3、商品详情接口为&#xff1a;functionId "wareBusiness"&#xff1b; 4、clientVersion "10.1.4"同…

java阵道之适配器大阵

开个玩笑&#xff0c;这里是一篇适配器模式讲解 定义&#xff1a; 适配器模式将某个类的接口转换成客户端期望的另一个接口表示&#xff0c;目的是消除由于接口不匹配所造成的类的兼容性问题。 主要分为三类&#xff1a;类的适配器模式、对象的适配器模式、接口的适配器模式。…

【原创】java+swing+mysql志愿者管理系统设计与实现

摘要&#xff1a; 志愿者管理系统是一个用于管理志愿者以及活动报名的系统&#xff0c;提高志愿者管理的效率&#xff0c;同时为志愿者提供更好的服务和体验。本文主要介绍如何使用javaswingmysql去实现一个志愿者管理系统。 功能分析&#xff1a; 系统主要提供给管理员和志…

洞察运营机会的数据分析利器

这套分析方法包括5个分析工具&#xff1a; 用“描述性统计”来快速了解数据的整体特点。用“变化分析”来寻找数据的问题和突破口。用“指标体系”来深度洞察变化背后的原因。用“相关性分析”来精确判断原因的影响程度。用“趋势预测”来科学预测未来数据的走势&#xff0c;

少儿编程 2023年9月中国电子学会图形化编程等级考试Scratch编程四级真题解析(选择题)

2023年9月scratch编程等级考试四级真题 选择题(共25题,每题2分,共50分) 1、角色为一个紫色圆圈,运行程序后,舞台上的图案是 A、 B、 C、 D、 答案:A

阿里云推出通义千问App,提供全方位的协助

&#x1f989; AI新闻 &#x1f680; 阿里云推出通义千问App&#xff0c;提供全方位的协助 摘要&#xff1a;阿里云旗下大模型通义千问App登陆各大安卓应用市场&#xff0c;具有超大规模预训练模型&#xff0c;可在创意文案、办公助理、学习助手、趣味生活等方面协助用户。功…

Redis测试新手入门教程

在测试过程中&#xff0c;我们或多或少会接触到Redis&#xff0c;今天就把在小破站看到的三丰老师课程&#xff0c;把笔记整理了下&#xff0c;用来备忘&#xff0c;也希望能给大家带来亿点点收获。 主要分为两个部分&#xff1a; 一、缓存技术在后端架构中是如何应用的&#…

10.31一些代码分析,香浓展开,移位器(桶形多位),二进制转格雷码

always的block之间&#xff0c;采用并行执行 always之内&#xff0c;采用非阻塞赋值&#xff0c;为顺序执行 一些代码分析 这个把使能信号和W信号组合在一起&#xff0c;进行case语句&#xff0c;即只有合并信号最高位为1时&#xff0c;才进行操作 always后面要写&#xff0…

非科班出身的野生Android也可以跳到大厂

野生Android从业者&#xff0c;非科班出身&#xff0c;在小公司打杂2年后&#xff0c;"意外"地拿到了大厂的offer。 高中毕业后&#xff0c;我选择了一条不太寻常的路&#xff0c;&#xff08;花大几万&#xff09;进入编程培训班&#xff0c;后来又自修课程&#xf…

信创强国 | 安全狗荣获信创工委会技术活动单位证书

近日&#xff0c;安全狗荣获中国电子工业标准化技术协会信息技术应用创新工作委员会&#xff08;以下简称“信创工委会”&#xff09;颁发的信息技术应用创新工作委员会技术活动单位证书。 作为国内云原生安全领导厂商&#xff0c;安全狗在信息技术应用创新方面有多年的技术积累…