【Chat GPT】用 ChatGPT 运行 Python

前言

ChatGPT 是一个基于 GPT-2 模型的人工智能聊天机器人,它可以进行智能对话,同时还支持 Python 编程语言的运行,可以通过 API 接口进行调用。本文将介绍如何使用 ChatGPT 运行 Python 代码,并提供一个实际代码案例。

ChatGPT 简介

ChatGPT 是一个可以与人进行智能对话的人工智能聊天机器人,它基于 GPT-2 模型开发。GPT-2 是 OpenAI 公司开发的一种基于深度学习的自然语言处理模型,它能够生成高质量的文章、诗歌、故事等,同时还能够进行智能对话。ChatGPT 利用 GPT-2 模型进行自然语言理解和生成,可以与用户进行流畅的对话。

ChatGPT 接口

ChatGPT 提供了 API 接口,可以通过 HTTP 请求向 ChatGPT 发送消息并接收机器人的回复。发送的消息必须使用 JSON 格式,包含以下字段:


{"message": "你好"
}

接收到的机器人的回复也是一个 JSON 字符串,包含以下字段:

{"message": "你好呀!"
}


其中,message 字段表示回复的文本内容。

ChatGPT Python SDK

为了方便使用 ChatGPT,我们还提供了一个 Python SDK。可以通过 pip 安装:

pip install chatgpt

安装完成后,可以通过以下代码进行测试:

from chatgpt import ChatGPTchatbot = ChatGPT()
response = chatbot.get_response("你好")
print(response)

这段代码会向 ChatGPT 发送一个消息:“你好”,并输出机器人的回复。

ChatGPT Python 示例代码

下面我们来介绍一个实际的 ChatGPT Python 示例代码。这个代码会向 ChatGPT 发送用户输入的问题,然后调用一个外部的 API 获取答案,最后将答案发送给用户。

首先,我们需要导入必要的依赖:
import json
import requests
from chatgpt import ChatGPT
然后,我们需要定义 ChatGPT 的 API 地址和 API Key:
CHATGPT_API_URL = "http://api.chatgpt.com/message"
CHATGPT_API_KEY = "YOUR_API_KEY_HERE"
接着,我们需要定义一个函数,用来向外部的 API 发送问题并获取答案:
def get_answer(question):API_URL = "https://api.openai.com/v1/engine/davinci-codex/search"API_KEY = "YOUR_API_KEY_HERE"prompt = f"What is the answer to the question: {question}?"headers = {"Content-Type": "application/json","Authorization": f"Bearer {API_KEY}",}data = {"model": "davinci-codex-2022-06-23","prompt": prompt,"max_tokens": 30,"temperature": 0,"n": 1,"stop": [".", "?", "!"],}response = requests.post(API_URL, headers=headers, json=data).json()answer = response["data"][0]["answer"]["text"].strip()return answer

 这个函数使用了 OpenAI 的 GPT-3 模型,接收一个问题作为输入,调用 API 获取答案,并返回答案。

最后,我们需要定义一个主函数,用来接收用户的输入,向 ChatGPT 发送问题,并获取答案:
def main():chatbot = ChatGPT(api_url=CHATGPT_API_URL, api_key=CHATGPT_API_KEY)while True:question = input("> ")response = chatbot.get_response(question)answer = get_answer(response)print(answer)

这个主函数使用一个循环,等待用户输入问题。每次接收到问题后,它会向 ChatGPT 发送问题,并获取机器人的回复。然后,它会调用 get_answer() 函数获取答案,并将答案输出到控制台。

最后,我们需要在程序末尾调用主函数:


 

if __name__ == "__main__":main()

这个程序的完整代码如下:

import json
import requests
from chatgpt import ChatGPTCHATGPT_API_URL = "http://api.chatgpt.com/message"
CHATGPT_API_KEY = "YOUR_API_KEY_HERE"def get_answer(question):API_URL = "https://api.openai.com/v1/engine/davinci-codex/search"API_KEY = "YOUR_API_KEY_HERE"prompt = f"What is the answer to the question: {question}?"headers = {"Content-Type": "application/json","Authorization": f"Bearer {API_KEY}",}data = {"model": "davinci-codex-2022-06-23","prompt": prompt,"max_tokens": 30,"temperature": 0,"n": 1,"stop": [".", "?", "!"],}response = requests.post(API_URL, headers=headers, json=data).json()answer = response["data"][0]["answer"]["text"].strip()return answerdef main():chatbot = ChatGPT(api_url=CHATGPT_API_URL, api_key=CHATGPT_API_KEY)while True:question = input("> ")response = chatbot.get_response(question)answer = get_answer(response)print(answer)if __name__ == "__main__":main()

总结

这个程序使用 ChatGPT 进行智能对话,并使用 OpenAI 的 GPT-3 模型获取答案。你可以将 YOUR_API_KEY_HERE 替换成你自己的 API Key,运行这个程序,进行测试。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/12452.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

简单理解大模型参数高效微调中的LoRA(Low-Rank Adaptation)

[论文地址] [代码] [ICLR 22] 阅前须知:本博文可能有描述不准确/过度简化/出错的地方,仅供参考。 网络结构 其中,原有模型的参数是直接冻结的,可训练参数只有额外引入的LoRA参数(由nn.Parameter实现)。 模型微调的本质 记网络原…

LabVIEW实现三相异步电机磁通模型

LabVIEW实现三相异步电机磁通模型 三相异步电动机由于经济和出色的机电坚固性而广泛用于工业化应用。这台机器的设计和驱动非常简单,但在控制扭矩和速度方面,它隐藏了相当大的功能复杂性。通过数学建模,可以理解机器动力学。 基于微分方程的…

【嵌入式学习笔记】嵌入式基础9——STM32启动过程

1.MAP文件浅析 1.1.MDK编译后生成的中间过程文件 1.2.Map文件构成: 程序段交叉引用关系(Section Cross References):描述各文件之间函数调用关系删除映像未使用的程序段(Removing Unused input sections from the im…

Netty学习(二)

文章目录 二. Netty 入门1. 概述1.1 Netty 是什么?1.2 Netty 的作者1.3 Netty 的地位1.4 Netty 的优势 2. Hello World2.1 目标加入依赖 2.2 服务器端2.3 客户端2.4 流程梳理课堂示例服务端客户端 分析提示(重要) 3. 组件3.1 EventLoop事件循…

【图像处理】使用 OpenCV 将您的照片变成卡通

图像到卡通 一、说明 在当今世界,我们被图像和视频所包围。从社交媒体到广告,图像已成为一种强大的交流媒介。但是你有没有想过,如果你能把你的照片变成卡通会发生什么?想象一下,为您最喜欢的照片创建动画版本&#xf…

express 路由匹配和数据获取

express配置路由只需要通过app.method(url,func)来配置,其中url配置和其中的参数获取方法不同 直接写全路径 路由中允许存在. get请求传入的参数 router.get("/home", (req, res) > {res.status(200).send(req.query); });通过/home?a1会收到对象…

Spark的DataFrame和Schema详解和实战案例Demo

1、概念介绍 Spark是一个分布式计算框架,用于处理大规模数据处理任务。在Spark中,DataFrame是一种分布式的数据集合,类似于关系型数据库中的表格。DataFrame提供了一种更高级别的抽象,允许用户以声明式的方式处理数据&#xff0c…

MyBatis-Plus

1.入门案例 1.1 pom依赖引用 <dependency><groupId>com.baomidou</groupId><artifactId>mybatis-plus-boot-starter</artifactId><version>3.5.3.1</version> </dependency><dependency><groupId>mysql</grou…

Pytorch深度学习-----神经网络的基本骨架-nn.Module的使用

系列文章目录 PyTorch深度学习——Anaconda和PyTorch安装 Pytorch深度学习-----数据模块Dataset类 Pytorch深度学习------TensorBoard的使用 Pytorch深度学习------Torchvision中Transforms的使用&#xff08;ToTensor&#xff0c;Normalize&#xff0c;Resize &#xff0c;Co…

python爬虫基础入门——利用requests和BeautifulSoup

(本文是自己学习爬虫的一点笔记和感悟) 经过python的初步学习,对字符串、列表、字典、元祖、条件语句、循环语句……等概念应该已经有了整体印象,终于可以着手做一些小练习来巩固知识点,写爬虫练习再适合不过。 1. 网页基础 爬虫的本质就是从网页中获取所需的信息,对网…

ClickHouse使用场景和案列分析

目录 一、ClickHouse 概述1. ClickHouse简介2. ClickHouse 发展历程3. ClickHouse 特点 二、ClickHouse 架构1. 数据存储层&#xff1a;2. SQL 解析层&#xff1a;3. 查询执行层&#xff1a;4. 数据压缩层&#xff1a; 三、ClickHouse 性能优化1. 查询优化&#xff1a;2. 数据压…

QT:qInstallMessageHandler打印日志重定向

目录 1、qInstallMessageHandler含义 2、实例&#xff1a; 3、调试级别Q包含用于警告和调试文本的全局宏&#xff1a; 4、打印日志&#xff0c;如何使用 1、qInstallMessageHandler含义 &#xff08;1&#xff09;此函数在使用Qt消息处理程序之前已定义。返回一个指向前一…

Python代理模式介绍、使用

一、Python代理模式介绍 Python代理模式&#xff08;Proxy Pattern&#xff09;是一种结构型设计模式。在代理模式中&#xff0c;代理对象充当了另一个对象的占位符&#xff0c;以控制对该对象的访问。 代理对象和被代理对象实现了相同的接口&#xff0c;因此它们可以互相替代…

类加载机制与类加载器

点击下方关注我&#xff0c;然后右上角点击...“设为星标”&#xff0c;就能第一时间收到更新推送啦~~~ Java 源码是如何形成类文件的&#xff0c;类文件又是如何加载到虚拟机的&#xff0c;类加载有哪些机制和原则呢&#xff1f;本文将为大家一一介绍。 1 Java 源码形成类文件…

基于拉格朗日-遗传算法的最优分布式能源DG选址与定容(Matlab代码实现)

目录 1 概述 2 数学模型 2.1 问题表述 2.2 DG的最佳位置和容量&#xff08;解析法&#xff09; 2.3 使用 GA 进行最佳功率因数确定和 DG 分配 3 仿真结果与讨论 3.1 33 节点测试配电系统的仿真 3.2 69 节点测试配电系统仿真 4 结论 1 概述 为了使系统网损达到最低值&a…

AI Chat 设计模式:10. 组合模式

本文是该系列的第八篇&#xff0c;采用问答式的方式展开&#xff0c;问题由我提出&#xff0c;答案由 Chat AI 作出&#xff0c;灰色背景的文字则主要是我的一些思考和补充。 问题列表 Q.1 给我介绍一下组合模式A.1Q.2 好的&#xff0c;给我举一个组合模式的例子&#xff0c;使…

idea导入maven项目问题

问题产生原因&#xff1a; ①idea加载maven项目&#xff0c;如果网络不通畅&#xff0c;会在maven仓库中产生一个文件&#xff0c;如下图所示: ②当网络通畅时&#xff0c;在下载就会因为此文件导致无法下载正确的maven依赖 解决方案&#xff1a; ①打开maven仓库的根目录 ②…

SpringDataJpa 实体类—主键生成策略

主键配置 IdGeneratedValue(strategy GenerationType.IDENTITY)Column(name "cust_id")private Long custId;//主键 Id&#xff1a;表示这个注解表示此属性对应数据表中的主键GeneratedValue(strategy GenerationType.IDENTITY) 此注解表示配置主键的生成策…

Ubuntu 安装 Wireshark

Ubuntu 安装 Wireshark_ubuntu wireshark_iBlackAngel的博客-CSDN博客

ts中声明引入未使用的报错——解决方案

在编写ts项目的时候&#xff0c;经常会出现如下报错&#xff1a; 导入声明中的所有导入都未使用 这是因为导入的模块暂时没有使用&#xff0c;ts给的一个提示信息 解决方案&#xff1a; 在ts.config.json中 把noUnusedLocals 设置为false即可 {"compilerOptions"…