ClickHouse使用场景和案列分析

目录

  • 一、ClickHouse 概述
    • 1. ClickHouse简介
    • 2. ClickHouse 发展历程
    • 3. ClickHouse 特点
  • 二、ClickHouse 架构
    • 1. 数据存储层:
    • 2. SQL 解析层:
    • 3. 查询执行层:
    • 4. 数据压缩层:
  • 三、ClickHouse 性能优化
    • 1. 查询优化:
    • 2. 数据压缩:
    • 3. 硬件优化:
    • 4. 分布式优化:
    • 5. 预聚合优化:
  • 四、ClickHouse 代码实现
    • 1. 数据存储层实现:
    • 2. SQL 解析层实现:
    • 3. 查询执行层实现:
    • 4. 数据压缩层实现:
    • 5. 分布式实现:
  • 五、ClickHouse 应用场景
    • 1. 大数据处理和分析:
    • 2. 数据仓库:
    • 3. 数据湖:
    • 4. 实时计算平台:
  • 六、案例分析
    • 1. 携程旅行网案例
    • 2. 其他企业应用案例
  • 七、结论
    • 1. ClickHouse 的优势
    • 2. ClickHouse 的不足
    • 3. ClickHouse 的发展前景

一、ClickHouse 概述

1. ClickHouse简介

ClickHouse 是一款开源的分布式列式数据库,旨在处理大规模数据集并实现快速查询。它最初由俄罗斯搜索引擎公司 Yandex 于 2016 年发布,并在短时间内获得了广泛的关注和应用。ClickHouse 具有高性能、可扩展性和可靠性等特点,成为处理海量数据的理想工具。

2. ClickHouse 发展历程

ClickHouse 的发展历程可以追溯到 2016 年,当时 Yandex 公司意识到传统的关系型数据库在处理大规模数据时存在性能瓶颈,于是开始研发一款专为大数据处理而设计的列式数据库。经过一段时间的努力,ClickHouse 正式发布。
自发布以来,ClickHouse 获得了广泛的应用和关注。许多知名公司,如携程、美团、滴滴等,都开始使用 ClickHouse 处理海量数据。同时,ClickHouse 的社区也不断发展壮大,为数据库的完善和推广做出了重要贡献。

3. ClickHouse 特点

  1. 高性能:ClickHouse 采用列式存储和查询技术,能够高效地处理大规模数据集,实现快速查询。
  2. 可扩展性:ClickHouse 采用分布式架构,能够轻松扩展计算和存储节点,支持大规模数据集的处理。
  3. 可靠性:ClickHouse 采用多版本并发控制 (MVCC) 技术,确保数据一致性和事务可靠性。
  4. 灵活性:ClickHouse 支持 SQL 查询语言,用户可以方便地进行数据查询和分析。
  5. 开源:ClickHouse 是一款开源数据库,用户可以自由使用、修改和分享。
  6. 易于使用:ClickHouse 具有简单的安装和配置过程,用户可以快速上手并开始使用。

二、ClickHouse 架构

ClickHouse 的整体架构包括四个主要组件:数据存储层、SQL 解析层、查询执行层和数据压缩层。下面是每个组件的详细说明:

1. 数据存储层:

数据存储层是 ClickHouse 的核心组件之一,它负责存储和管理数据。ClickHouse 使用列式存储方式,将数据按列存储在磁盘上,而不是按行存储。这种存储方式可以大大提高查询效率,因为查询时只需要读取需要的列,而不是整个行。

2. SQL 解析层:

SQL 解析层负责解析用户输入的 SQL 查询语句,并将其转换为内部格式。在 ClickHouse 中,SQL 查询语句被解析为抽象语法树 (AST),然后被传递到查询执行层进行进一步处理。

3. 查询执行层:

查询执行层是 ClickHouse 的另一个核心组件,它负责执行 SQL 查询语句并返回结果。在查询执行过程中,ClickHouse 会利用优化器对查询语句进行优化,以提高查询效率。查询结果被返回给用户,以便进行数据分析和查询。

4. 数据压缩层:

数据压缩层负责对 ClickHouse 中的数据进行压缩和解压缩。ClickHouse 支持多种数据压缩算法,如 ZSTD、LZ4、GZIP 等。数据压缩可以大大减少磁盘占用空间,并提高查询效率。
除了以上四个主要组件外,ClickHouse 还包括其他一些组件,如分布式层、安全层等。这些组件负责处理 ClickHouse 的分布式架构和安全问题,以便支持大规模数据集的处理和安全访问。

三、ClickHouse 性能优化

ClickHouse 作为一款高性能的数据分析引擎,在性能优化方面具有许多优势。以下是一些常见的性能优化方法:

1. 查询优化:

ClickHouse 提供了一系列查询优化技术,包括谓词下推、列剪裁、限流等。这些技术可以有效减少数据处理的时间和资源消耗,提高查询效率。

2. 数据压缩:

ClickHouse 支持多种数据压缩算法,如 ZSTD、LZ4、GZIP 等。数据压缩可以减少磁盘占用空间,并提高查询效率。此外,ClickHouse 还支持实时数据压缩,可以边写数据边压缩,进一步提高性能。

3. 硬件优化:

ClickHouse 支持多种硬件优化技术,如 CPU 优化、内存优化、网络优化等。通过调整硬件配置,可以进一步提高 ClickHouse 的性能。

4. 分布式优化:

ClickHouse 支持分布式架构,可以通过水平扩展容易地增加计算和存储资源。同时,ClickHouse 还提供了数据分片和数据复制等技术,可以进一步优化分布式环境下的性能。

5. 预聚合优化:

ClickHouse 支持预聚合功能,可以在查询前对数据进行聚合,从而减少查询时的计算量。预聚合还可以提高数据的一致性和可用性,降低数据处理的时间和资源消耗。
总结起来,ClickHouse 在性能优化方面具有许多优势,可以通过多种技术手段提高查询效率和资源利用率,从而满足大规模数据分析和决策的需求。

四、ClickHouse 代码实现

ClickHouse 是一款高性能的数据分析引擎,其代码实现主要包括以下几个方面:

1. 数据存储层实现:

ClickHouse 的数据存储层主要采用了 MergeTree 存储引擎,该引擎是一种列式存储引擎,可以支持高效的数据压缩和快速查询。MergeTree 存储引擎的实现主要涉及数据文件格式、索引结构、元数据管理等方面。

2. SQL 解析层实现:

ClickHouse 的 SQL 解析层主要负责将用户输入的 SQL 查询解析成抽象语法树(AST),并进行语法检查和语义分析。SQL 解析层的实现主要涉及词法分析、语法分析、语义分析等方面。

3. 查询执行层实现:

ClickHouse 的查询执行层主要负责执行 SQL 查询,并将结果返回给用户。查询执行层的实现主要涉及查询优化、数据读取、数据聚合等方面。

4. 数据压缩层实现:

ClickHouse 的数据压缩层主要负责对数据进行压缩和解压缩操作。数据压缩层的实现主要涉及数据格式转换、压缩算法实现等方面。

5. 分布式实现:

ClickHouse 支持分布式架构,可以通过水平扩展容易地增加计算和存储资源。分布式实现主要涉及数据分片、数据复制、节点通信等方面。
总结起来,ClickHouse 的代码实现涵盖了数据存储层、SQL 解析层、查询执行层、数据压缩层和分布式层等方面,通过这些层的协同工作,实现了高性能的数据分析和决策。

五、ClickHouse 应用场景

ClickHouse 适用于多种应用场景,包括但不限于以下几种:

1. 大数据处理和分析:

ClickHouse 可以处理大规模数据集,并提供高效的数据分析和查询功能,适用于需要处理海量数据的应用场景,如互联网、金融、电信等领域。

2. 数据仓库:

ClickHouse 可以作为数据仓库的存储和分析引擎,提供高效的数据查询和报表生成功能,适用于需要对大量数据进行集中存储、管理和分析的场景,如企业数据仓库、金融数据仓库等。

3. 数据湖:

ClickHouse 可以处理非结构化数据和半结构化数据,适用于数据湖的存储和分析场景,如大规模社交媒体数据、物联网数据等。

4. 实时计算平台:

ClickHouse 提供了实时数据处理和计算功能,可以支持实时数据流处理和实时决策,适用于需要对实时数据进行分析和处理的场景,如实时金融交易、实时广告投放等。
总结起来,ClickHouse 适用于需要处理大规模数据、实现高效数据分析和决策的场景,可以作为各种数据存储和分析应用的引擎,为业务提供高效的数据支持和洞察。

六、案例分析

1. 携程旅行网案例

携程旅行网是中国领先的综合性旅行服务公司,提供酒店预订、机票预订、旅游度假等服务。携程在数据处理和分析方面面临着海量数据、高并发查询和复杂业务逻辑的挑战。为了应对这些挑战,携程采用了 ClickHouse 作为其数据仓库和数据分析平台。
ClickHouse 帮助携程实现了以下目标:

  • 快速处理海量数据:携程每天需要处理数百万条订单数据,ClickHouse 可以高效地处理这些数据,使得数据分析和查询更加快速。
  • 高并发查询:携程需要应对高并发的查询需求,ClickHouse 可以支持高并发查询,使得数据分析和查询更加高效。
  • 灵活的业务逻辑:携程的业务逻辑非常复杂,需要根据不同的维度和指标进行数据分析和查询,ClickHouse 提供了灵活的数据建模和查询语言,可以满足携程的复杂业务需求。
    通过使用 ClickHouse,携程可以更加高效地管理数据、进行数据分析和查询,为业务决策提供有力的支持。

2. 其他企业应用案例

除了携程旅行网,其他许多企业也成功地应用了 ClickHouse。以下是一些企业应用案例:

  • 腾讯:腾讯在内部数据分析和运营决策方面使用了 ClickHouse,可以高效地处理海量数据,为业务决策提供支持。
  • 滴滴出行:滴滴出行使用 ClickHouse 作为其数据仓库和数据分析平台,支持了滴滴出行的出行数据分析和决策。
  • 美团点评:美团点评采用了 ClickHouse 作为其数据分析平台,可以高效地处理海量数据,为美团点评的业务决策提供支持。
  • 饿了么:饿了么使用 ClickHouse 进行数据分析和决策,支持了饿了么的实时数据分析和决策。
    这些案例表明,ClickHouse 可以帮助企业处理大规模数据、实现高效数据分析和决策,为企业的业务发展提供有力的支持。

七、结论

1. ClickHouse 的优势

  • 处理海量数据:ClickHouse 可以高效地处理大规模数据,支持数百万条记录的查询和分析。
  • 高并发查询:ClickHouse 可以支持高并发查询,满足企业对于实时数据分析和决策的需求。
  • 灵活的数据建模:ClickHouse 提供了灵活的数据建模和查询语言,可以满足企业复杂业务需求。
  • 开源免费:ClickHouse 是一款开源免费的数据仓库和数据分析工具,可以帮助企业降低成本。
  • 易于使用和扩展:ClickHouse 具有简单的部署和扩展方式,可以快速搭建数据仓库和数据分析平台。

2. ClickHouse 的不足

  • 缺乏成熟的生态系统:虽然 ClickHouse 在数据处理和分析方面表现出色,但其生态系统仍然相对较弱。与其他数据仓库和数据分析工具相比,ClickHouse 的工具和功能可能不如成熟。
  • 稳定性有待提高:由于 ClickHouse 是一款较新的数据仓库和数据分析工具,因此在稳定性方面可能仍有待提高。
  • 缺乏广泛的社区支持:虽然 ClickHouse 是一款开源免费的工具,但其社区支持仍然相对较弱。与其他热门开源项目相比,ClickHouse 的社区规模和贡献可能较少。

3. ClickHouse 的发展前景

尽管 ClickHouse 存在一些不足,但它在数据处理和分析方面的高效性能和灵活性使其成为一款有吸引力的数据仓库和数据分析工具。随着 ClickHouse 持续的发展和完善,它有望吸引更多的企业和用户使用,并在数据处理和分析领域占据更大的市场份额。在未来,ClickHouse 可能会进一步扩展其功能和生态系统,成为数据仓库和数据分析领域的重要工具之一。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/12440.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

QT:qInstallMessageHandler打印日志重定向

目录 1、qInstallMessageHandler含义 2、实例: 3、调试级别Q包含用于警告和调试文本的全局宏: 4、打印日志,如何使用 1、qInstallMessageHandler含义 (1)此函数在使用Qt消息处理程序之前已定义。返回一个指向前一…

Python代理模式介绍、使用

一、Python代理模式介绍 Python代理模式(Proxy Pattern)是一种结构型设计模式。在代理模式中,代理对象充当了另一个对象的占位符,以控制对该对象的访问。 代理对象和被代理对象实现了相同的接口,因此它们可以互相替代…

类加载机制与类加载器

点击下方关注我,然后右上角点击...“设为星标”,就能第一时间收到更新推送啦~~~ Java 源码是如何形成类文件的,类文件又是如何加载到虚拟机的,类加载有哪些机制和原则呢?本文将为大家一一介绍。 1 Java 源码形成类文件…

基于拉格朗日-遗传算法的最优分布式能源DG选址与定容(Matlab代码实现)

目录 1 概述 2 数学模型 2.1 问题表述 2.2 DG的最佳位置和容量(解析法) 2.3 使用 GA 进行最佳功率因数确定和 DG 分配 3 仿真结果与讨论 3.1 33 节点测试配电系统的仿真 3.2 69 节点测试配电系统仿真 4 结论 1 概述 为了使系统网损达到最低值&a…

AI Chat 设计模式:10. 组合模式

本文是该系列的第八篇,采用问答式的方式展开,问题由我提出,答案由 Chat AI 作出,灰色背景的文字则主要是我的一些思考和补充。 问题列表 Q.1 给我介绍一下组合模式A.1Q.2 好的,给我举一个组合模式的例子,使…

idea导入maven项目问题

问题产生原因: ①idea加载maven项目,如果网络不通畅,会在maven仓库中产生一个文件,如下图所示: ②当网络通畅时,在下载就会因为此文件导致无法下载正确的maven依赖 解决方案: ①打开maven仓库的根目录 ②…

SpringDataJpa 实体类—主键生成策略

主键配置 IdGeneratedValue(strategy GenerationType.IDENTITY)Column(name "cust_id")private Long custId;//主键 Id:表示这个注解表示此属性对应数据表中的主键GeneratedValue(strategy GenerationType.IDENTITY) 此注解表示配置主键的生成策…

Ubuntu 安装 Wireshark

Ubuntu 安装 Wireshark_ubuntu wireshark_iBlackAngel的博客-CSDN博客

ts中声明引入未使用的报错——解决方案

在编写ts项目的时候,经常会出现如下报错: 导入声明中的所有导入都未使用 这是因为导入的模块暂时没有使用,ts给的一个提示信息 解决方案: 在ts.config.json中 把noUnusedLocals 设置为false即可 {"compilerOptions"…

【雕爷学编程】Arduino动手做(175)---机智云ESP8266开发板模块4

37款传感器与执行器的提法,在网络上广泛流传,其实Arduino能够兼容的传感器模块肯定是不止这37种的。鉴于本人手头积累了一些传感器和执行器模块,依照实践出真知(一定要动手做)的理念,以学习和交流为目的&am…

【UE5 多人联机教程】03-创建游戏

效果 步骤 打开“UMG_MainMenu”,增加创建房间按钮的点击事件 添加如下节点 其中,“FUNL Fast Create Widget”是插件自带的函数节点,内容如下: “创建会话”节点指游戏成功创建一个会话后,游戏的其他实例即可发现&am…

微服务体系<1>

我们的微服务架构 我们的微服务架构和单体架构的区别 什么是微服务架构 微服务就是吧我们传统的单体服务分成 订单模块 库存模块 账户模块单体模块 是本地调用 从订单模块 调用到库存模块 再到账户模块 这三个模块都是调用的同一个数据库 这就是我们的单体架构微服务 就是…

微信小程序如何实现页面传参?

前言 只要你的小程序超过一个页面那么可能会需要涉及到页面参数的传递,下面我总结了 4 种页面方法。 路径传递 通过在url后面拼接参数,参数与路径之间使用 ? 分隔,参数键与参数值用 相连,不同参数用 & 分隔;如…

Training-Time-Friendly Network for Real-Time Object Detection 论文学习

1. 解决了什么问题? 目前的目标检测器很少能做到快速训练、快速推理,并同时保持准确率。直觉上,推理越快的检测器应该训练也很快,但大多数的实时检测器反而需要更长的训练时间。准确率高的检测器大致可分为两类:推理时…

银河麒麟安装mysql数据库(mariadb)-银河麒麟安装JDK-银河麒麟安装nginx(附安装包)

银河麒麟离线全套安装教程(手把手教程) 1.银河麒麟服务器系统安装mysql数据库(mariadb) 2.银河麒麟桌面系统安装mysql数据库(mariadb) 3.银河麒麟服务器系统安装JDK 4.银河麒麟桌面系统安装JDK 5.银河麒麟…

青大数据结构【2021】

一、单选(17!) 根据中序遍历得到降序序列可以知道,每个结点的左子树的结点的值比该结点的值小,因为没有重复的关键字,所以拥有最大值的结点没有左子树。 二、简答 三、分析计算 四、算法分析 3.迪杰斯特拉…

windows安装Elasticsearch8.9.0

官网解压安装好路径(非中文,无空格) 可参考 言之有李LAX csdn http://t.csdn.cn/S2oju本人使用jdk17 修改配置elasticsearch.yml xpack.security.enabled: false xpack.security.http.ssl:enabled: false直接点击bin\elasticsearch.bat…

Unity 工具之 NuGetForUnity 包管理器,方便在 Unity 中的进行包管理的简单使用

Unity 工具之 NuGetForUnity 包管理器,方便在 Unity 中的进行包管理的简单使用 目录 Unity 工具之 NuGetForUnity 包管理器,方便在 Unity 中的进行包管理的简单使用 一、简单介绍 二、NuGetForUnity 的下载导入 Unity 三、NuGetForUnity 在 Unity 的…

LeetCode 75 第十二题(11)盛最多水的容器

目录 题目: 示例: 分析: 代码: 题目: 示例: 分析: 配合着示例给出的图片我们可以得知找出盛水最多的容器是什么意思,给一个数组,找出数组中两个元素能围成的最大的矩阵面积是多少. 比较直观的想法是套两层for循环暴力解出来,但是这题是中等难度题,一般中等题是没法用暴力得…

pinia在vue3中的使用

总结: 在store文件夹中建一个pinia的文件userStore.js 1.要想使用pinia必须先引入defineStore 这里我们使用es6的模块化语法导出的 import { defineStore } from pinia 2.然后使用export const useUserStore defineStore(user,{}) defineStore 方法有两个参数&…