分类预测 | Matlab实现KOA-CNN-BiGRU-selfAttention多特征分类预测(自注意力机制)

分类预测 | Matlab实现KOA-CNN-BiGRU-selfAttention多特征分类预测(自注意力机制)

目录

    • 分类预测 | Matlab实现KOA-CNN-BiGRU-selfAttention多特征分类预测(自注意力机制)
      • 分类效果
      • 基本描述
      • 程序设计
      • 参考资料

分类效果

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本描述

1.Matlab实现KOA-CNN-BiGRU-selfAttention开普勒算法优化卷积双向门控循环单元融合自注意力多特征分类预测,多特征输入模型,运行环境Matlab2023b及以上;
2.基于开普勒算法(KOA)优化卷积双向门控循环单元(CNN-BiGRU)结合自注意力机制(selfAttention)分类预测。2023年新算法KOA,MATLAB程序,多行变量特征输入,优化了学习率、卷积核大小及隐藏层单元数等。
3.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。程序语言为matlab,程序可出分类效果图,迭代图,混淆矩阵图.
4.data为数据集,输入12个特征,分四类;main为主程序,其余为函数文件,无需运行。
5.输出指标包括优化参数、精确度、召回率、精确率、F1分数。

程序设计

  • 完整程序和数据获取方式,私信博主回复Matlab实现KOA-CNN-BiGRU-selfAttention多特征分类预测(自注意力机制)
[Order] = sort(PL_Fit);  %% 对当前种群中的解的适应度值进行排序%% 函数评估t时的最差适应度值worstFitness = Order(SearchAgents_no);                  %% Eq.(11)M = M0 * (exp(-lambda * (t / Tmax)));                   %% Eq.(12)%% 计算表示太阳与第i个解之间的欧几里得距离Rfor i = 1:SearchAgents_noR(i) = 0;for j = 1:dimR(i) = R(i) + (Sun_Pos(j) - Positions(i, j))^2;   %% Eq.(7)endR(i) = sqrt(R(i));end%% 太阳和对象i在时间t的质量计算如下:for i = 1:SearchAgents_nosum = 0;for k = 1:SearchAgents_nosum = sum + (PL_Fit(k) - worstFitness);endMS(i) = rand * (Sun_Score - worstFitness) / (sum);   %% Eq.(8)m(i) = (PL_Fit(i) - worstFitness) / (sum);           %% Eq.(9)end%%2步:定义引力(F)% 计算太阳和第i个行星的引力,根据普遍的引力定律:for i = 1:SearchAgents_noRnorm(i) = (R(i) - min(R)) / (max(R) - min(R));      %% 归一化的R(Eq.(24)MSnorm(i) = (MS(i) - min(MS)) / (max(MS) - min(MS)); %% 归一化的MSMnorm(i) = (m(i) - min(m)) / (max(m) - min(m));      %% 归一化的mFg(i) = orbital(i) * M * ((MSnorm(i) * Mnorm(i)) / (Rnorm(i) * Rnorm(i) + eps)) + (rand); %% Eq.(6)end
% a1表示第i个解在时间t的椭圆轨道的半长轴,
for i = 1:SearchAgents_noa1(i) = rand * (T(i)^2 * (M * (MS(i) + m(i)) / (4 * pi * pi)))^(1/3); %% Eq.(23)
endfor i = 1:SearchAgents_no
% a2是逐渐从-1-2的循环控制参数
a2 = -1 - 1 * (rem(t, Tmax / Tc) / (Tmax / Tc)); %% Eq.(29)% ξ是从1-2的线性减少因子
n = (a2 - 1) * rand + 1;    %% Eq.(28)
a = randi(SearchAgents_no); %% 随机选择的解的索引
b = randi(SearchAgents_no); %% 随机选择的解的索引
rd = rand(1, dim);          %% 按照正态分布生成的向量
r = rand;                   %% r1是[0,1]范围内的随机数%% 随机分配的二进制向量
U1 = rd < r;                %% Eq.(21)
O_P = Positions(i, :);      %% 存储第i个解的当前位置%%6步:更新与太阳的距离(第345在后面)
if rand < rand% h是一个自适应因子,用于控制时间t时太阳与当前行星之间的距离h = (1 / (exp(n * randn))); %% Eq.(27)% 基于三个解的平均向量:当前解、迄今为止的最优解和随机选择的解Xm = (Positions(b, :) + Sun_Pos + Positions(i, :)) / 3.0;Positions(i, :) = Positions(i, :) .* U1 + (Xm + h .* (Xm - Positions(a, :))) .* (1 - U1); %% Eq.(26)
else

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/122985.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【数据结构】数组和字符串(五):特殊矩阵的压缩存储:稀疏矩阵——压缩稀疏行(CSR)

文章目录 4.2.1 矩阵的数组表示4.2.2 特殊矩阵的压缩存储a. 对角矩阵的压缩存储b~c. 三角、对称矩阵的压缩存储d. 稀疏矩阵的压缩存储——三元组表e. 压缩稀疏行&#xff08;Compressed Sparse Row&#xff0c;CSR&#xff09;矩阵结构体创建CSR矩阵元素设置初始化打印矩阵销毁…

JVM——GC垃圾回收器

GC垃圾回收器 JVM在进行GC时&#xff1a;并不是对这三个区域&#xff08;新生区&#xff0c;幸存区&#xff08;from&#xff0c;to&#xff09;&#xff0c;老年区&#xff09;统一回收&#xff0c;大部分时候&#xff0c;回收都是新生区 GC两种类&#xff1a;轻GC&#xff…

Linux多核CPU启动内核调试(详细)总结

目录 一、综述二、调试流程简介2.1 大体流程2.2 spin-table简介 三、uboot和内核配置3.1 uboot配置3.2 timer配置3.3 GIC中断配置3.4 驱动确认3.5 SMP配置3.6 内核config配置 四、其他相关链接1、[交叉编译linux内核总结](https://blog.csdn.net/Luckiers/article/details/1245…

Cesium 展示——动态绘制添加点

文章目录 需求分析1. 删除重画2. 动态增加需求 点的坐标是通过长连接通信进行实时更新,形成动态点的轨迹 分析 1. 删除重画 在接收到新值后,将新值 push 到数组 weatherRouteList 中,绘制时通过removeall删除所有实体重新绘制,具体如下: watch(){weatherRouteList(ne…

python:使用Scikit-image对遥感影像进行傅里叶变换特征提取(fourier)

作者:CSDN @ _养乐多_ 在本博客中,我们将介绍如何使用Scikit-Image来进行傅里叶变换特征提取(fourier),并且提供一个示例代码,演示了如何在单波段遥感图像上应用这些方法。 傅里叶变换特征提取是一种数学工具,用于将图像中的细节、纹理和边缘信息以不同频率的方式呈现…

电脑监控软件哪些比较好用

电脑监控软件在当今信息化时代越来越受到人们的关注&#xff0c;它们可以用于保护公司的商业机密&#xff0c;防止员工在工作中做一些不恰当的事情&#xff0c;以及在家庭中监控孩子的上网行为等。 本文将介绍一些比较好用的电脑监控软件&#xff1a; 一、域之盾软件 这款软件…

浅谈Docker原理

文章目录 前言命名空间控制组分层存储镜像和容器Docker EngineDocker Registry 前言 Docker 是一种容器化技术&#xff0c;它通过利用 Linux 内核提供的虚拟化技术和隔离机制&#xff0c;实现了更轻量级的应用程序虚拟化方案 命名空间 Docker 使用了 Linux 的命名空间特性&a…

npm更新包时This operation requires a one-time password.

[访问我的npm包](mhfwork/yt-ui - npm) 更新npm包时出现 This operation requires a one-time password.是因为需要认证 解决办法 1. 点击红线处的链接 2. 进入npm官网获取指定秘钥 3. 再次填入 one-time password 即可

Linux进程地址空间

文章目录 背景进程地址空间分页和虚拟地址空间 写时拷贝 背景 研究背景&#xff1a;我们在之前通过fork函数创建子进程的时候&#xff0c;我们发现fork的返回值有两个&#xff0c;且值不相同但地址确实相同的&#xff0c;我们知道在物理空间上这种情况是不可能存在的&#xff…

conda相关的命令操作

准备切换conda环境 cd C:\ProgramData\Anaconda3\Scripts查看所有环境 conda info --envs选择环境 activate pytorch安装torch pip install D:\installPackage\torch-1.2.0-cp36-cp36m-win_amd64.whl安装torchvision pip install D:\installPackage\torchvision-0.4.0-cp3…

SQL中:语法总结(group by,having ,distinct,top,order by,like等等)

语法总结&#xff1a;group by&#xff0c;distinct ...... 1.分组group by、条件havinggroup byhaving 2.聚集函数count 3.order by4.对表中数据的操作&#xff1a;增insert、删delete、改update增insert删delete改update 5.对表中数据的操作&#xff1a;查select嵌套查询不相…

如何防范AI等技术带来的诈骗风险?从技术、法律、教育等多方面入手

文章目录 前言什么是AI诈骗案例案例一案例二 AI诈骗的特点如何预防和应对AI诈骗建议后记 前言 互联网是一把双刃剑&#xff0c;这是我们常说的一个问题。 随着人工智能技术的快速发展&#xff0c;AI诈骗成为当今社会面临的新兴威胁。不法分子利用人工智能技术&#xff0c;以更…

8.自定义组件布局和详解Context上下文

pages/index.vue layout布局运行在服务端 1、在项目的目录下新建layout文件夹&#xff0c;并新建一个blog.vue布局文件 2、在页面中的layout函数里&#xff0c;返回刚才新建布局文件的名字blog就可以使用了 export default {...layout (context) {console.log(context)retu…

在3分钟内使用AI-Chat生成精美PPT(附AI工具)

前言 在人工智能的大趋势下&#xff0c;AI-Chat是一款令人惊叹的技术。它用强大的自然语言处理技术帮助我们快速生成PPT&#xff0c;提高工作效率。本文将介绍使用ChatAI-Chat生成PPT的方法&#xff0c;以及使用Mindshow转换为炫酷的演示文稿。让技术为我们节省时间&#xff0c…

Ubuntu中使用yum命令出现错误提示:Command ‘yum‘ not found, did you mean:

Ubuntu中使用yum命令出现错误提示:Command ‘yum’ not found, did you mean: command ‘gum’ from snap gum (0.12.0) command ‘num’ from deb quickcal (2.4-1) command ‘yum4’ from deb nextgen-yum4 (4.5.2-6) command ‘uum’ from deb freewnn-jserver (1.1.1~a021…

Stable Diffusion系列(一):古早显卡上最新版 WebUI 安装及简单操作

文章目录 Stable Diffusion安装AnimateDiff插件适配sdxl模型适配 Stable Diffusion使用插件安装界面设置基础文生图加入lora的文生图 Stable Diffusion安装 我的情况比较特殊&#xff0c;显卡版本太老&#xff0c;最高也就支持cuda10.2&#xff0c;因此只能安装pytorch1.12.1&…

计算机网络【CN】介质访问控制

信道划分介质访问控制 FDMTDMWDMCDM【掌握eg即可】 随机介质访问控制 CSMA 1-坚持CSMA 非坚持CSMA p-坚持CSMA 空闲时 立即发送数据 立即发送数据 以概率P发送数据&#xff0c;以概率1-p推迟到下一个时隙 忙碌时 继续坚持侦听 放弃侦听&#xff0c;等待一个随机的时…

25-数据结构-稀疏矩阵-三元组

简介&#xff1a;三元组&#xff0c;意思是一个结构体里&#xff0c;有三个变量&#xff0c;存储矩阵信息。而三元组顺序存储&#xff0c;则是用顺序表&#xff0c;存储三元组&#xff0c;里面包含&#xff0c;三元组类型的一维数组&#xff0c;存储非零元素&#xff1b;总的行…

代码随想录算法训练营第23期day36|738.单调递增的数字、968.监控二叉树

目录 一、&#xff08;leetcode 738&#xff09;单调递增的数字 二、&#xff08;leetcode 968&#xff09;监控二叉树 一、&#xff08;leetcode 738&#xff09;单调递增的数字 力扣题目链接 状态&#xff1a;查看思路Debug后AC。 暴力方法肯定是超时&#xff0c;因此需要…

chapter 3-6

文章目录 3.检测两个整数是否有相反的符号4.计算整数的绝对值&#xff08;abs&#xff09;而不使用分支5.计算两个整数的最小值或最大值而不使用分支6.确定一个整数是否是2的幂 3.检测两个整数是否有相反的符号 //检测两个整数是否有相反的符号 int x, y; // 要…