python与深度学习(九):CNN和cifar10

目录

  • 1. 说明
  • 2. cifar10实战
    • 2.1 导入相关库
    • 2.2 加载数据
    • 2.3 数据预处理
    • 2.4 数据处理
    • 2.5 构建网络模型
    • 2.6 模型编译
    • 2.7 模型训练
    • 2.8 模型保存
    • 2.9 模型评价
    • 2.10 模型测试
    • 2.11 模型训练结果的可视化
  • 3. cifar10的CNN模型可视化结果图
  • 4. 完整代码
  • 5. 改进后的代码和结果

1. 说明

本篇文章是CNN的另外一个例子,cifar10,是彩色的十分类数据集。
可以搭建卷积神经网络来训练模型。

2. cifar10实战

2.1 导入相关库

以下第三方库是python专门用于深度学习的库

# 导入tensorflow
import tensorflow as tf
# 导入keras
from tensorflow import keras
from keras.datasets import cifar10
# 引入绘制acc和loss曲线的库
import matplotlib.pyplot as plt
# 引入ANN的必要的类
from keras.layers import Dense, Conv2D, MaxPool2D, Flatten
from keras.models import Sequential
from keras import optimizers, losses
from keras.preprocessing.image import ImageDataGenerator

2.2 加载数据

把cifar10数据集进行加载
x_train是fashion_mnist训练集图片,大小的32323的,y_train是对应的标签是数字。
x_test是fashion_mnist测试集图片,大小的32323的,y_test是对应的标签是数字。
因为y的形状是(None,1)的,如果直接进行独热编码会变成(None,1,10),会和神经网络的输出形状(None,10)不匹配,因此需要对独热编码之前的y的形状进行降维处理变成(None,)。

"1.加载数据"
"""
x_train是fashion_mnist训练集图片,大小的32*32*3的,y_train是对应的标签是数字
x_test是fashion_mnist测试集图片,大小的32*32*3的,y_test是对应的标签是数字
"""
(x_train, y_train), (x_test, y_test) = cifar10.load_data()  # 加载cifar10数据集
print('mnist_data:', x_train.shape, y_train.shape, x_test.shape, y_test.shape)  # 打印训练数据和测试数据的形状
"""
因为y的形状是(None,1)的,如果直接进行独热编码会变成(None,1,10),会和神经网络的输出形状(None,10)不匹配,
因此需要对独热编码之前的y的形状进行降维处理变成(None,)
"""
y_train = tf.squeeze(y_train, axis=1)
y_test = tf.squeeze(y_test, axis=1)

2.3 数据预处理

(1) 将输入的图片进行归一化,从0-255变换到0-1;
(2) 将标签y进行独热编码,因为神经网络的输出是10个概率值,而y是1个数, 计算loss时无法对应计算,因此将y进行独立编码成为10个数的行向量,然后进行loss的计算 独热编码:例如数值1的10分类的独热编码是[0 1 0 0 0 0 0 0 0 0,即1的位置为1,其余位置为0。

def preprocess(x, y):  # 数据预处理函数x = tf.cast(x, dtype=tf.float32) / 255.  # 将输入的图片进行归一化,从0-255变换到0-1y = tf.cast(y, dtype=tf.int32)  # 将输入图片的标签转换为int32类型y = tf.one_hot(y, depth=10)"""# 将标签y进行独热编码,因为神经网络的输出是10个概率值,而y是1个数,计算loss时无法对应计算,因此将y进行独立编码成为10个数的行向量,然后进行loss的计算独热编码:例如数值1的10分类的独热编码是[0 1 0 0 0 0 0 0 0 0,即1的位置为1,其余位置为0"""return x, y

2.4 数据处理

数据加载进入内存后,需要转换成 Dataset 对象,才能利用 TensorFlow 提供的各种便捷功能。
通过 Dataset.from_tensor_slices 可以将训练部分的数据图片 x 和标签 y 都转换成Dataset 对象

batchsz = 128  # 每次输入给神经网络的图片数
"""
数据加载进入内存后,需要转换成 Dataset 对象,才能利用 TensorFlow 提供的各种便捷功能。
通过 Dataset.from_tensor_slices 可以将训练部分的数据图片 x 和标签 y 都转换成Dataset 对象
"""
db = tf.data.Dataset.from_tensor_slices((x_train, y_train))  # 构建训练集对象
db = db.map(preprocess).shuffle(60000).batch(batchsz)  # 将数据进行预处理,随机打散和批量处理
ds_val = tf.data.Dataset.from_tensor_slices((x_test, y_test))  # 构建测试集对象
ds_val = ds_val.map(preprocess).batch(batchsz)  # 将数据进行预处理,随机打散和批量处理

2.5 构建网络模型

构建了两层卷积层,两层池化层,然后是展平层(将二维特征图拉直输入给全连接层),然后是三层全连接层。

"3.构建网络模型"
model = Sequential([Conv2D(filters=6, kernel_size=(5, 5), activation='relu'),MaxPool2D(pool_size=(2, 2), strides=2),Conv2D(filters=16, kernel_size=(5, 5), activation='relu'),MaxPool2D(pool_size=(2, 2), strides=2),Flatten(),Dense(120, activation='relu'),Dense(84, activation='relu'),Dense(10,activation='softmax')])model.build(input_shape=(None, 32, 32, 3))  # 模型的输入大小
model.summary()  # 打印网络结构

2.6 模型编译

模型的优化器是Adam,另外一种优化方法,学习率是0.01,
损失函数是losses.CategoricalCrossentropy,多分类交叉熵,
性能指标是正确率accuracy。

"4.模型编译"
model.compile(optimizer='Adam',loss=losses.CategoricalCrossentropy(from_logits=False),metrics=['accuracy'])
"""
模型的优化器是Adam
损失函数是losses.CategoricalCrossentropy,
性能指标是正确率accuracy
"""

2.7 模型训练

模型训练的次数是20,每1次循环进行测试

"5.模型训练"
history = model.fit(db, epochs=20, validation_data=ds_val, validation_freq=1)
"""
模型训练的次数是20,每1次循环进行测试
"""

2.8 模型保存

以.h5文件格式保存模型

"6.模型保存"
model.save('cnn_cifar10.h5')  # 以.h5文件格式保存模型

2.9 模型评价

得到测试集的正确率

"7.模型评价"
model.evaluate(ds_val)  # 得到测试集的正确率

2.10 模型测试

对模型进行测试

"8.模型测试"
sample = next(iter(ds_val))  # 取一个batchsz的测试集数据
x = sample[0]  # 测试集数据
y = sample[1]  # 测试集的标签
pred = model.predict(x)  # 将一个batchsz的测试集数据输入神经网络的结果
pred = tf.argmax(pred, axis=1)  # 每个预测的结果的概率最大值的下标,也就是预测的数字
y = tf.argmax(y, axis=1)  # 每个标签的最大值对应的下标,也就是标签对应的数字
print(pred)  # 打印预测结果
print(y)  # 打印标签类别

2.11 模型训练结果的可视化

对模型的训练结果进行可视化

"9.模型训练时的可视化"
# 显示训练集和验证集的acc和loss曲线
acc = history.history['accuracy']  # 获取模型训练中的accuracy
val_acc = history.history['val_accuracy']  # 获取模型训练中的val_accuracy
loss = history.history['loss']  # 获取模型训练中的loss
val_loss = history.history['val_loss']  # 获取模型训练中的val_loss
# 绘值acc曲线
plt.figure(1)
plt.plot(acc, label='Training Accuracy')
plt.plot(val_acc, label='Validation Accuracy')
plt.title('Training and Validation Accuracy')
plt.legend()
# 绘制loss曲线
plt.figure(2)
plt.plot(loss, label='Training Loss')
plt.plot(val_loss, label='Validation Loss')
plt.title('Training and Validation Loss')
plt.legend()
plt.show()  # 将结果显示出来

3. cifar10的CNN模型可视化结果图

Epoch 1/20
391/391 [==============================] - 20s 44ms/step - loss: 1.7699 - accuracy: 0.3471 - val_loss: 1.5087 - val_accuracy: 0.4547
Epoch 2/20
391/391 [==============================] - 20s 49ms/step - loss: 1.4580 - accuracy: 0.4737 - val_loss: 1.4031 - val_accuracy: 0.4884
Epoch 3/20
391/391 [==============================] - 21s 51ms/step - loss: 1.3519 - accuracy: 0.5168 - val_loss: 1.3040 - val_accuracy: 0.5345
Epoch 4/20
391/391 [==============================] - 21s 51ms/step - loss: 1.2646 - accuracy: 0.5506 - val_loss: 1.2333 - val_accuracy: 0.5646
Epoch 5/20
391/391 [==============================] - 19s 47ms/step - loss: 1.2030 - accuracy: 0.5753 - val_loss: 1.2309 - val_accuracy: 0.5673
Epoch 6/20
391/391 [==============================] - 19s 46ms/step - loss: 1.1519 - accuracy: 0.5941 - val_loss: 1.1947 - val_accuracy: 0.5716
Epoch 7/20
391/391 [==============================] - 18s 44ms/step - loss: 1.1104 - accuracy: 0.6088 - val_loss: 1.1496 - val_accuracy: 0.5987
Epoch 8/20
391/391 [==============================] - 19s 46ms/step - loss: 1.0726 - accuracy: 0.6235 - val_loss: 1.1330 - val_accuracy: 0.6031
Epoch 9/20
391/391 [==============================] - 19s 47ms/step - loss: 1.0393 - accuracy: 0.6327 - val_loss: 1.1079 - val_accuracy: 0.6119
Epoch 10/20
391/391 [==============================] - 21s 51ms/step - loss: 1.0149 - accuracy: 0.6440 - val_loss: 1.1023 - val_accuracy: 0.6160
Epoch 11/20
391/391 [==============================] - 19s 47ms/step - loss: 0.9798 - accuracy: 0.6550 - val_loss: 1.0828 - val_accuracy: 0.6265
Epoch 12/20
391/391 [==============================] - 19s 47ms/step - loss: 0.9594 - accuracy: 0.6621 - val_loss: 1.0978 - val_accuracy: 0.6191
Epoch 13/20
391/391 [==============================] - 18s 44ms/step - loss: 0.9325 - accuracy: 0.6709 - val_loss: 1.0803 - val_accuracy: 0.6264
Epoch 14/20
391/391 [==============================] - 20s 49ms/step - loss: 0.9106 - accuracy: 0.6801 - val_loss: 1.0792 - val_accuracy: 0.6212
Epoch 15/20
391/391 [==============================] - 23s 54ms/step - loss: 0.8928 - accuracy: 0.6873 - val_loss: 1.0586 - val_accuracy: 0.6382
Epoch 16/20
391/391 [==============================] - 20s 50ms/step - loss: 0.8695 - accuracy: 0.6931 - val_loss: 1.0825 - val_accuracy: 0.6303
Epoch 17/20
391/391 [==============================] - 22s 54ms/step - loss: 0.8524 - accuracy: 0.6993 - val_loss: 1.0917 - val_accuracy: 0.6296
Epoch 18/20
391/391 [==============================] - 19s 46ms/step - loss: 0.8314 - accuracy: 0.7074 - val_loss: 1.0753 - val_accuracy: 0.6341
Epoch 19/20
391/391 [==============================] - 19s 48ms/step - loss: 0.8117 - accuracy: 0.7136 - val_loss: 1.0701 - val_accuracy: 0.6376
Epoch 20/20
391/391 [==============================] - 20s 50ms/step - loss: 0.7967 - accuracy: 0.7200 - val_loss: 1.0715 - val_accuracy: 0.6376
79/79 [==============================] - 1s 17ms/step - loss: 1.0715 - accuracy: 0.6376
4/4 [==============================] - 0s 6ms/step

在这里插入图片描述
在这里插入图片描述
从以上结果可知,模型的准确率达到了63%,太低了,原因是网络结构有点简单,因此进行改变网络结构,同时为了降低过拟合的影响,加入数据增强部分。

4. 完整代码

# 导入tensorflow
import tensorflow as tf
# 导入keras
from tensorflow import keras
from keras.datasets import cifar10
# 引入绘制acc和loss曲线的库
import matplotlib.pyplot as plt
# 引入ANN的必要的类
from keras.layers import Dense, Conv2D, MaxPool2D, Flatten
from keras.models import Sequential
from keras import optimizers, losses
from keras.preprocessing.image import ImageDataGenerator
"1.加载数据"
"""
x_train是fashion_mnist训练集图片,大小的32*32*3的,y_train是对应的标签是数字
x_test是fashion_mnist测试集图片,大小的32*32*3的,y_test是对应的标签是数字
"""
(x_train, y_train), (x_test, y_test) = cifar10.load_data()  # 加载cifar10数据集
print('mnist_data:', x_train.shape, y_train.shape, x_test.shape, y_test.shape)  # 打印训练数据和测试数据的形状
"""
因为y的形状是(None,1)的,如果直接进行独热编码会变成(None,1,10),会和神经网络的输出形状(None,10)不匹配,
因此需要对独热编码之前的y的形状进行降维处理变成(None,)
"""
y_train = tf.squeeze(y_train, axis=1)
y_test = tf.squeeze(y_test, axis=1)
"2.数据预处理"def preprocess(x, y):  # 数据预处理函数x = tf.cast(x, dtype=tf.float32) / 255.  # 将输入的图片进行归一化,从0-255变换到0-1y = tf.cast(y, dtype=tf.int32)  # 将输入图片的标签转换为int32类型y = tf.one_hot(y, depth=10)"""# 将标签y进行独热编码,因为神经网络的输出是10个概率值,而y是1个数,计算loss时无法对应计算,因此将y进行独立编码成为10个数的行向量,然后进行loss的计算独热编码:例如数值1的10分类的独热编码是[0 1 0 0 0 0 0 0 0 0,即1的位置为1,其余位置为0"""return x, ybatchsz = 128  # 每次输入给神经网络的图片数
"""
数据加载进入内存后,需要转换成 Dataset 对象,才能利用 TensorFlow 提供的各种便捷功能。
通过 Dataset.from_tensor_slices 可以将训练部分的数据图片 x 和标签 y 都转换成Dataset 对象
"""
db = tf.data.Dataset.from_tensor_slices((x_train, y_train))  # 构建训练集对象
db = db.map(preprocess).shuffle(60000).batch(batchsz)  # 将数据进行预处理,随机打散和批量处理
ds_val = tf.data.Dataset.from_tensor_slices((x_test, y_test))  # 构建测试集对象
ds_val = ds_val.map(preprocess).batch(batchsz)  # 将数据进行预处理,随机打散和批量处理"3.构建网络模型"
model = Sequential([Conv2D(filters=6, kernel_size=(5, 5), activation='relu'),MaxPool2D(pool_size=(2, 2), strides=2),Conv2D(filters=16, kernel_size=(5, 5), activation='relu'),MaxPool2D(pool_size=(2, 2), strides=2),Flatten(),Dense(120, activation='relu'),Dense(84, activation='relu'),Dense(10,activation='softmax')])model.build(input_shape=(None, 32, 32, 3))  # 模型的输入大小
model.summary()  # 打印网络结构"4.模型编译"
model.compile(optimizer='Adam',loss=losses.CategoricalCrossentropy(from_logits=False),metrics=['accuracy'])
"""
模型的优化器是Adam
损失函数是losses.CategoricalCrossentropy,
性能指标是正确率accuracy
""""5.模型训练"
history = model.fit(db, epochs=20, validation_data=ds_val, validation_freq=1)
"""
模型训练的次数是20,每1次循环进行测试
"""
"6.模型保存"
model.save('cnn_cifar10.h5')  # 以.h5文件格式保存模型"7.模型评价"
model.evaluate(ds_val)  # 得到测试集的正确率"8.模型测试"
sample = next(iter(ds_val))  # 取一个batchsz的测试集数据
x = sample[0]  # 测试集数据
y = sample[1]  # 测试集的标签
pred = model.predict(x)  # 将一个batchsz的测试集数据输入神经网络的结果
pred = tf.argmax(pred, axis=1)  # 每个预测的结果的概率最大值的下标,也就是预测的数字
y = tf.argmax(y, axis=1)  # 每个标签的最大值对应的下标,也就是标签对应的数字
print(pred)  # 打印预测结果
print(y)  # 打印标签类别"9.模型训练时的可视化"
# 显示训练集和验证集的acc和loss曲线
acc = history.history['accuracy']  # 获取模型训练中的accuracy
val_acc = history.history['val_accuracy']  # 获取模型训练中的val_accuracy
loss = history.history['loss']  # 获取模型训练中的loss
val_loss = history.history['val_loss']  # 获取模型训练中的val_loss
# 绘值acc曲线
plt.figure(1)
plt.plot(acc, label='Training Accuracy')
plt.plot(val_acc, label='Validation Accuracy')
plt.title('Training and Validation Accuracy')
plt.legend()
# 绘制loss曲线
plt.figure(2)
plt.plot(loss, label='Training Loss')
plt.plot(val_loss, label='Validation Loss')
plt.title('Training and Validation Loss')
plt.legend()
plt.show()  # 将结果显示出来

5. 改进后的代码和结果

# 导入tensorflow
import tensorflow as tf
# 导入keras
from tensorflow import keras
from keras.datasets import cifar10
# 引入绘制acc和loss曲线的库
import matplotlib.pyplot as plt
# 引入ANN的必要的类
from keras.layers import Dense, Conv2D, MaxPool2D, Flatten, Dropout
from keras.models import Sequential
from keras import optimizers, losses
from keras.preprocessing.image import ImageDataGenerator
"1.加载数据"
"""
x_train是fashion_mnist训练集图片,大小的32*32*3的,y_train是对应的标签是数字
x_test是fashion_mnist测试集图片,大小的32*32*3的,y_test是对应的标签是数字
"""
(x_train, y_train), (x_test, y_test) = cifar10.load_data()  # 加载cifar10数据集
print('mnist_data:', x_train.shape, y_train.shape, x_test.shape, y_test.shape)  # 打印训练数据和测试数据的形状
image_gen_train = ImageDataGenerator(rescale=1. / 1.,  # 如为图像,分母为255时,可归至0~1rotation_range=45,  # 随机45度旋转width_shift_range=.15,  # 宽度偏移height_shift_range=.15,  # 高度偏移horizontal_flip=False,  # 水平翻转zoom_range=0.5  # 将图像随机缩放阈量50%
)
image_gen_train.fit(x_train)
"""
因为y的形状是(None,1)的,如果直接进行独热编码会变成(None,1,10),会和神经网络的输出形状(None,10)不匹配,
因此需要对独热编码后的y的形状进行降维处理变成(None,10)
"""
y_train = tf.squeeze(y_train, axis=1)
y_test = tf.squeeze(y_test, axis=1)
"2.数据预处理"def preprocess(x, y):  # 数据预处理函数x = tf.cast(x, dtype=tf.float32) / 255.  # 将输入的图片进行归一化,从0-255变换到0-1y = tf.cast(y, dtype=tf.int32)  # 将输入图片的标签转换为int32类型y = tf.one_hot(y, depth=10)"""# 将标签y进行独热编码,因为神经网络的输出是10个概率值,而y是1个数,计算loss时无法对应计算,因此将y进行独立编码成为10个数的行向量,然后进行loss的计算独热编码:例如数值1的10分类的独热编码是[0 1 0 0 0 0 0 0 0 0,即1的位置为1,其余位置为0"""return x, ybatchsz = 128  # 每次输入给神经网络的图片数
"""
数据加载进入内存后,需要转换成 Dataset 对象,才能利用 TensorFlow 提供的各种便捷功能。
通过 Dataset.from_tensor_slices 可以将训练部分的数据图片 x 和标签 y 都转换成Dataset 对象
"""
db = tf.data.Dataset.from_tensor_slices((x_train, y_train))  # 构建训练集对象
db = db.map(preprocess).shuffle(50000).batch(batchsz)  # 将数据进行预处理,随机打散和批量处理
ds_val = tf.data.Dataset.from_tensor_slices((x_test, y_test))  # 构建测试集对象
ds_val = ds_val.map(preprocess).batch(batchsz)  # 将数据进行预处理,随机打散和批量处理"3.构建网络模型"
model = Sequential([Conv2D(32, kernel_size=(3, 3), padding='same', activation='relu'),Dropout(0.25),MaxPool2D(pool_size=(2, 2), strides=2),Conv2D(filters=64, kernel_size=(3, 3),padding='same', activation='relu'),Dropout(0.25),MaxPool2D(pool_size=(2, 2), strides=2),Conv2D(filters=128, kernel_size=(3, 3), padding='same', activation='relu'),Dropout(0.25),MaxPool2D(pool_size=(2, 2), strides=2),Flatten(),Dense(1024, activation='relu'),Dense(10,activation='softmax')])model.build(input_shape=(None, 32, 32, 3))  # 模型的输入大小
model.summary()  # 打印网络结构"4.模型编译"
model.compile(optimizer='Adam',loss=losses.CategoricalCrossentropy(from_logits=False),metrics=['accuracy'])
"""
模型的优化器是Adam
损失函数是losses.CategoricalCrossentropy,
性能指标是正确率accuracy
""""5.模型训练"
history = model.fit(db, epochs=20, validation_data=ds_val, validation_freq=1)
"""
模型训练的次数是10,每1次循环进行测试
"""
"6.模型保存"
model.save('cnn_cifar10_4.h5')  # 以.h5文件格式保存模型"7.模型评价"
model.evaluate(ds_val)  # 得到测试集的正确率"8.模型测试"
sample = next(iter(ds_val))  # 取一个batchsz的测试集数据
x = sample[0]  # 测试集数据
y = sample[1]  # 测试集的标签
pred = model.predict(x)  # 将一个batchsz的测试集数据输入神经网络的结果
pred = tf.argmax(pred, axis=1)  # 每个预测的结果的概率最大值的下标,也就是预测的数字
y = tf.argmax(y, axis=1)  # 每个标签的最大值对应的下标,也就是标签对应的数字
print(pred)  # 打印预测结果
print(y)  # 打印标签类别"9.模型训练时的可视化"
# 显示训练集和验证集的acc和loss曲线
acc = history.history['accuracy']  # 获取模型训练中的accuracy
val_acc = history.history['val_accuracy']  # 获取模型训练中的val_accuracy
loss = history.history['loss']  # 获取模型训练中的loss
val_loss = history.history['val_loss']  # 获取模型训练中的val_loss
# 绘值acc曲线
plt.figure(1)
plt.plot(acc, label='Training Accuracy')
plt.plot(val_acc, label='Validation Accuracy')
plt.title('Training and Validation Accuracy')
plt.legend()
# 绘制loss曲线
plt.figure(2)
plt.plot(loss, label='Training Loss')
plt.plot(val_loss, label='Validation Loss')
plt.title('Training and Validation Loss')
plt.legend()
plt.show()  # 将结果显示出来
Epoch 1/20
391/391 [==============================] - 109s 272ms/step - loss: 1.4598 - accuracy: 0.4688 - val_loss: 1.2981 - val_accuracy: 0.5713
Epoch 2/20
391/391 [==============================] - 103s 262ms/step - loss: 1.0536 - accuracy: 0.6297 - val_loss: 1.0809 - val_accuracy: 0.6476
Epoch 3/20
391/391 [==============================] - 104s 264ms/step - loss: 0.8955 - accuracy: 0.6840 - val_loss: 0.9347 - val_accuracy: 0.7052
Epoch 4/20
391/391 [==============================] - 103s 262ms/step - loss: 0.7785 - accuracy: 0.7258 - val_loss: 0.9195 - val_accuracy: 0.6880
Epoch 5/20
391/391 [==============================] - 104s 264ms/step - loss: 0.6896 - accuracy: 0.7575 - val_loss: 0.8039 - val_accuracy: 0.7330
Epoch 6/20
391/391 [==============================] - 103s 262ms/step - loss: 0.6085 - accuracy: 0.7864 - val_loss: 0.8141 - val_accuracy: 0.7296
Epoch 7/20
391/391 [==============================] - 102s 261ms/step - loss: 0.5378 - accuracy: 0.8102 - val_loss: 0.7418 - val_accuracy: 0.7463
Epoch 8/20
391/391 [==============================] - 102s 259ms/step - loss: 0.4698 - accuracy: 0.8335 - val_loss: 0.6867 - val_accuracy: 0.7693
Epoch 9/20
391/391 [==============================] - 102s 259ms/step - loss: 0.4042 - accuracy: 0.8563 - val_loss: 0.6729 - val_accuracy: 0.7734
Epoch 10/20
391/391 [==============================] - 103s 261ms/step - loss: 0.3474 - accuracy: 0.8763 - val_loss: 0.6690 - val_accuracy: 0.7696
Epoch 11/20
391/391 [==============================] - 102s 261ms/step - loss: 0.2969 - accuracy: 0.8958 - val_loss: 0.6920 - val_accuracy: 0.7660
Epoch 12/20
391/391 [==============================] - 102s 260ms/step - loss: 0.2597 - accuracy: 0.9072 - val_loss: 0.7243 - val_accuracy: 0.7558
Epoch 13/20
391/391 [==============================] - 102s 259ms/step - loss: 0.2146 - accuracy: 0.9235 - val_loss: 0.7107 - val_accuracy: 0.7599
Epoch 14/20
391/391 [==============================] - 106s 269ms/step - loss: 0.1904 - accuracy: 0.9318 - val_loss: 0.6790 - val_accuracy: 0.7760
Epoch 15/20
391/391 [==============================] - 103s 262ms/step - loss: 0.1703 - accuracy: 0.9404 - val_loss: 0.7177 - val_accuracy: 0.7706
Epoch 16/20
391/391 [==============================] - 103s 262ms/step - loss: 0.1526 - accuracy: 0.9463 - val_loss: 0.7038 - val_accuracy: 0.7781
Epoch 17/20
391/391 [==============================] - 103s 262ms/step - loss: 0.1333 - accuracy: 0.9520 - val_loss: 0.7267 - val_accuracy: 0.7770
Epoch 18/20
391/391 [==============================] - 103s 263ms/step - loss: 0.1253 - accuracy: 0.9576 - val_loss: 0.7518 - val_accuracy: 0.7728
Epoch 19/20
391/391 [==============================] - 103s 263ms/step - loss: 0.1210 - accuracy: 0.9570 - val_loss: 0.7855 - val_accuracy: 0.7670
Epoch 20/20
391/391 [==============================] - 104s 265ms/step - loss: 0.1105 - accuracy: 0.9607 - val_loss: 0.8065 - val_accuracy: 0.7721
79/79 [==============================] - 4s 48ms/step - loss: 0.8065 - accuracy: 0.7721
4/4 [==============================] - 0s 15ms/step

在这里插入图片描述
在这里插入图片描述
结果有所改善,但是过拟合仍然存在。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/12297.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

OnnxRuntime TensorRT OpenCV::DNN性能对比(YoloV8)实测

1. 前言 之前把ORT的一套推理环境框架搭好了,在项目中也运行得非常愉快,实现了cpu/gpu,fp32/fp16的推理运算,同onnx通用模型在不同推理框架下的性能差异对比贴一下,记录一下自己对各种推理框架的学习状况 YoloV8模型大小 模型名称参数量NANO3.2M...... 2. CPU篇 CPU推理框架性…

CSS中display属性的inline-block导致布局错位问题

HTML部分代码 <div class"header_wrap"><ul><li><a href"#">首页</a></li><li>新闻</li><li>角色</li><li>世界</li><li>漫画</li><li>漫画</li><l…

力扣热门100题之轮转数组【中等】

题目描述 给定一个整数数组 nums&#xff0c;将数组中的元素向右轮转 k 个位置&#xff0c;其中 k 是非负数。 示例 1: 输入: nums [1,2,3,4,5,6,7], k 3 输出: [5,6,7,1,2,3,4] 解释: 向右轮转 1 步: [7,1,2,3,4,5,6] 向右轮转 2 步: [6,7,1,2,3,4,5] 向右轮转 3 步: [5,6…

libcomposite: Unknown symbol config_group_init (err 0)

加载libcomposite.ko 失败 问题描述 如图&#xff0c;在做USB OTG 设备模式的时候需要用到libcomposite.ko驱动&#xff0c;加载失败了。 原因&解决方法 有一个依赖叫configfs.ko的驱动没有安装。可以从内核代码的fs/configfs/configfs.ko中找到这个驱动。先加载confi…

王道数据结构-代码实操1(全注解版)

#include<stdio.h>void loveyou(int n){ // 传入参数类型为int型&#xff0c;在此函数中表示为n&#xff1b;返回值类型为void&#xff0c;即没有返回值&#xff1b; int i1; //定义了一个整数型变量i&#xff0c;且只在loveyou函数中有用&#xff1b;while(i…

QT第二讲

思维导图 完善登录框&#xff0c;当登录成功时&#xff0c;关闭登录界面&#xff0c;跳转到新的界面中 loginscuueed.h #ifndef LOGINSUCCEED_H #define LOGINSUCCEED_H#include <QWidget>namespace Ui { class loginSucceed; }class loginSucceed : public QWidget {…

PostgreSQL-Centos7源码安装

卸载服务器上的pg13 本来是想删除原来的postgis重新源码安装就行,但是yum安装的PostgreSQL不能直接使用,会提示以下问题: 之前服务是用yum安装的,现在需要删除 -- 删除数据的postgis插件 drop extension postgis; drop extension postgis cascade;删除相关安装包 # 查询…

Redis网络模型

文章目录 Redis网络模型用户空间与内核空间阻塞IO非阻塞IOIO多路复用事件通知机制web服务流程 信号驱动IO异步IO异步与同步 网络模型 Redis网络模型 用户空间与内核空间 服务器大多采用的是Linux系统&#xff0c;使用的应用都是需要通过Linux内核与硬件交互。 为了避免用户应…

F5 LTM 知识点和实验 4-持久化

第四章:持久化 持久化: 大多数应用都是有状态的,比如,使用一个购物网站,最重要的是用户在放入一个商品之后,刷新网页要能继续看到购物车里的东西,这就需要请求报文发到同一个后端服务器上,持久化就能完成这个功能。 持久化支持一下几种场景: 源地址目标地址SSLSIPH…

KNN模型进行分类和回归任务

KNN工作原理 “近朱者赤&#xff0c;近墨者黑”可以说是KNN的工作原理。整个计算过程分为三步&#xff1a;1:计算待分类物体与其他物体之间的距离&#xff1b;2:统计距离最近的K个邻居&#xff1b;3:对于K个最近的邻居&#xff0c;它们属于哪个分类最多&#xff0c;待分类物体就…

聊聊STM32的基本定时器

STM32 的基本定时器&#xff08;Basic Timer&#xff09;是一种简单的定时器模块&#xff0c;用于生成基于时钟频率的定时中断。它可以用于实现各种定时和计时功能&#xff0c;例如延时、频率测量、PWM 生成等。 基本定时器通常由一个 16 位的自由运行计数器和一个预分频器组成…

Mac代码编辑器sublime text 4中文注册版下载

Sublime Text 4 for Mac简单实用功能强大&#xff0c;是程序员敲代码必备的代码编辑器&#xff0c;sublime text 4中文注册版支持多种编程语言&#xff0c;包括C、Java、Python、Ruby等&#xff0c;可以帮助程序员快速编写代码。Sublime Text的界面简洁、美观&#xff0c;支持多…

Bad owner or permissions on ~/.ssh/config

错误原因&#xff1a;设置本地所有文件的权限为741等。。。 在执行ssh免密码登录时报如下的错误&#xff1a;Bad owner or permissions on ~/.ssh/config。 解决方案&#xff1a; chmod 600 ~/.ssh/config

Kendo UI,一个加速Web应用界面开发的JavaScript组件库!

Kendo UI是什么&#xff1f; 首先&#xff0c;Kendo UI是一个由四个JavaScript UI库组成的包&#xff0c;这些库是专为jQuery、Angular、React和Vue原生构建的&#xff0c;每一个都是用一致的API和主题构建的。所以无论开发者怎么选择&#xff0c;所开发的Web应用始终保持了现…

this关键字和同步异步宏认为微任务理解

目录 js面试常见问题&#xff1a;1.this指向 2.闭包定义和作用 3.原型链 4.异步协程 this关键字 this主要有以下几个使用场合。 1&#xff09;全局环境 &#xff08;2&#xff09;构造函数 &#xff08;3&#xff09;对象的方法 避免多层this 避免数组处理方法中的 this 避免回…

推荐几个Windows iso镜像下载的网站

文章目录 1. 微软官网2. MSDN网站3. 系统库(xitongku)4. 其他网站最后总结 给大家推荐几个 Windows iso镜像下载网站 1. 微软官网 入口地址&#xff1a;https://www.microsoft.com/zh-cn/software-download 以下载Windows11为例&#xff1a; 1&#xff09;找到下载Windows11…

undefined reference to `__android_log_print‘

报错描述 在 Android NDK 相关的工程构建中&#xff0c;出现报错&#xff1a; undefined reference to __android_log_print’ 翻译成 QM 能理解的话&#xff1a; 在链接阶段&#xff0c; 遇到一个需要被链接的符号 __android_log_print, 但是没有在给出的依赖库里面找到 __an…

【LeetCode】114.二叉树展开为链表

题目 给你二叉树的根结点 root &#xff0c;请你将它展开为一个单链表&#xff1a; 展开后的单链表应该同样使用 TreeNode &#xff0c;其中 right 子指针指向链表中下一个结点&#xff0c;而左子指针始终为 null 。展开后的单链表应该与二叉树 先序遍历 顺序相同。 示例 1&…

day43-Spring_IOC

0目录 1.2.3 1. Spring_IOC 1.1 定义&#xff1a;轻量级框架&#xff0c;java EE的春天&#xff0c;主流框架 1.2 Spring特性&#xff1a;IOC控制反转&#xff1b;AOP面相切面 1.3 组成部分&#xff1a;Spring在SSM中所起到的作用&#xff08;SpringMVC和Mybatis框架的黏…

flutter 打包iOS安装包

flutter iOS Xcode打包并导出ipa文件安装包 1、 Xcode配置 1、 启动打包 1、 等待打包 1、 打包完成、准备导出ipa 1、 选择模式 1、 选择配置文件 1、 导出 1、 选择导出位置 1、 得到ipa