OpenCV学习(五)——图像基本操作(访问图像像素值、图像属性、感兴趣区域ROI和图像边框)

图像基本操作

    • 5. 图像基本操作
      • 5.1 访问像素值并修改
      • 5.2 访问图像属性
      • 5.2 图像感兴趣区域ROI
      • 5.3 拆分和合并图像通道
      • 5.4 为图像设置边框(填充)

5. 图像基本操作

  • 访问像素值并修改
  • 访问图像属性
  • 设置感兴趣区域(ROI)
  • 分割和合并图像

5.1 访问像素值并修改

访问像素值

import cv2# 读取图像
# img——>(h, w, c),c为通道数
img = cv2.imread('lena.jpg')# 访问像素值
px = img[100, 100]
print("像素值:", px)
# img——>(b, g, r)
# 蓝色像素值——>对应通道b
blue = img[100, 100, 0]
print("蓝色像素值:", blue)

请添加图片描述

修改像素值

img[100, 100] = [255,255,255]
print(img[100,100])

请添加图片描述
简单访问每个像素值并修改比较缓慢,一般不使用。

Numpy数组方法array.item()array.itemset()被认为更好,但是它们始终返回标量。

更好的像素访问和编辑方法:

# 访问蓝色像素值
print(img.item(100, 100, 0))# 修改蓝色像素值
img.itemset((100,100,0), 255)

请添加图片描述

修改B通道像素值为255,区间[200:400, 200:400]

import cv2# 读取图像
# img——>(h, w, c),c为通道数
img = cv2.imread('lena.jpg')# 修改B通道像素值为255,区间[200:400, 200:400]
for i in range(200, 400):for j in range(200, 400):img.itemset((i, j, 0), 255)# 显示图像
cv2.imshow('image', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

请添加图片描述

5.2 访问图像属性

属性属性包括行数、列数和通道数,图像数据类型,像素数等。

import cv2# 读取图像
# img——>(h, w, c),c为通道数
img = cv2.imread('lena.jpg')# 图像形状
print('图像形状', img.shape)
# 像素总数
print('像素总数', img.size)# 图像数据类型
print('图像数据类型', img.dtype)

请添加图片描述

5.2 图像感兴趣区域ROI

对于人物图像,我们感兴趣的一般是人脸区域。使用Numpy索引再次获得ROI,并将脸复制到图像中的另一个区域:

import cv2# 读取图像
img = cv2.imread('lena.jpg')# 获取脸的区域
face = img[200:400, 200:400]# 将脸复制到另一区域
img[200:400, 0:200] = face# 显示图像
cv2.imshow('image', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

请添加图片描述

5.3 拆分和合并图像通道

将图像的通道进行分离,并分开展示。同时实现OpenCV在一个窗口显示多张图像。

import cv2
import numpy as np# 读取图像
img = cv2.imread('lena.jpg')# 分离通道
b, g, r = cv2.split(img)# 合并通道
img_m = cv2.merge((b, g, r))# 改变各通道图像的尺寸
b = cv2.resize(b, (200, 200))
g = cv2.resize(g, (200, 200))
r = cv2.resize(r, (200, 200))
img = cv2.resize(img, (200, 200))# 将单通道图像转换为3通道
b = cv2.cvtColor(b, cv2.COLOR_GRAY2RGB)
g = cv2.cvtColor(g, cv2.COLOR_GRAY2RGB)
r = cv2.cvtColor(r, cv2.COLOR_GRAY2RGB)# 同一窗口显示多张图像
# 拼接需要图像的形状及通道一样
hmerge = np.hstack((b, g, r, img)) # 水平拼接
vmerge = np.vstack((b, g, r)) # 垂直拼接# 显示图像
cv2.imshow('image', hmerge)
cv2.waitKey(0)
cv2.destroyAllWindows()

请添加图片描述

5.4 为图像设置边框(填充)

cv2.copyMakeBorder(src, top, bottom, left, right, borderType, dst=None, value=None)函数在卷积运算,零填充等方面有很多应用。

  • src:输入图像

  • top,bottom,left,right:边界宽度(以相应方向上的像素数为单位)

  • borderType:定义要添加哪种边框的标志,可以是以下类型

    • cv2.BORDER_CONSTANT :添加恒定的彩色边框
    • cv2.BORDER_REFLECT : 边框将是边框元素的镜像
    • cv2.BORDER_REPLICATE:最后一个元素被复制
    • cv2.BORDER_WRAP:包裹
  • dst:目标图像

  • value:边框的颜色

import cv2
import numpy as np# 读取图像
img = cv2.imread('lena.jpg')
img = cv2.resize(img, (200, 200))# 设置边框
constant = cv2.copyMakeBorder(img, 10, 10, 10, 10, cv2.BORDER_CONSTANT)
reflect = cv2.copyMakeBorder(img, 10, 10, 10, 10, cv2.BORDER_REFLECT)
replicate = cv2.copyMakeBorder(img, 10, 10, 10, 10, cv2.BORDER_REPLICATE)
wrap = cv2.copyMakeBorder(img, 10, 10, 10, 10, cv2.BORDER_WRAP)# 图像拼接,水平
hmerge = np.hstack((constant, reflect, replicate, wrap)) # 水平拼接# 显示图像
cv2.imshow('image', hmerge)
cv2.waitKey(0)
cv2.destroyAllWindows()

请添加图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/121839.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何在vscode中添加less插件

Less (Leaner Style Sheets 的缩写) 是一门向后兼容的 CSS 扩展语言。它对CSS 语言增加了少许方便的扩展,通过less可以编写更少的代码实现更强大的样式。但less不是css,浏览器不能直接识别,即浏览器无法执行less代码&a…

2023年正版win10/win11系统安装教学(纯净版)

第一步:准备一个8G容量以上的U盘。 注意,在制作系统盘时会格式化U盘,所以最好准备个空U盘,防止资料丢失。 第二步:制作系统盘。 安装win10 进入windows官网 官网win10下载地址:https://www.microsoft.c…

安卓开发实例:随机数

点击按钮生成一个1-100之间的随机数 activity_random_number.xml <?xml version"1.0" encoding"utf-8"?> <androidx.constraintlayout.widget.ConstraintLayoutxmlns:android"http://schemas.android.com/apk/res/android"xmlns:a…

记一次vue3实现TRSP大华相机拉流的经历

一、背景 业务场景&#xff0c;大华IP相机安装在A城市某建筑场所&#xff0c;工控机是内网通过4G流量卡上网&#xff0c;工控机通过相机采集数据后做故障识别并上传故障信息到地面服务器&#xff0c;地面服务器在B城市。 现需要在地面服务器提供的WEB界面上实现IP相机实时拉流…

linux套接字选项API

获取套接字的选项值(getsockopt) 【头文件】 #include <sys/types.h> #include <sys/socket.h> 【函数原型】 int getsockopt(int sockfd, int level, int optname,void *optval, socklen_t *optlen); 【函数功能】 用于获取一个套接字的选项 【参数含义】 […

【前端】NodeJS核心知识点整理

1.Node.js入门案例 1.1.什么是Node.js JS是脚本语言&#xff0c;脚本语言都需要一个解析器才能运行。对于写在HTML页面里的JS&#xff0c;浏览器充当了解析器的角色。而对于需要独立运行的JS&#xff0c;NodeJS就是一个解析器。 每一种解析器都是一个运行环境&#xff0c;不但…

数据特征工程 | 主成分分析(Python)

特征抽取(feature extraction)和特征选择(feature selection)不一样,特征抽取是从原特征集中推导出有用的信息构成新的特征集。特征选择是从原特征集中选择一部分子集作为训练特征。 特征抽取将数据集从一个特征空间投影到了一个更低维度的特征空间。 主成分分析(princ…

Kubernetes - Ingress HTTP 负载搭建部署解决方案(新版本v1.21+)

在看这一篇之前&#xff0c;如果不了解 Ingress 在 K8s 当中的职责&#xff0c;建议看之前的一篇针对旧版本 Ingress 的部署搭建&#xff0c;在开头会提到它的一些简介Kubernetes - Ingress HTTP 负载搭建部署解决方案_放羊的牧码的博客-CSDN博客 开始表演 1、kubeasz 一键安装…

十大排序算法(C语言)

参考文献 https://zhuanlan.zhihu.com/p/449501682 https://blog.csdn.net/mwj327720862/article/details/80498455?ops_request_misc%257B%2522request%255Fid%2522%253A%2522169837129516800222848165%2522%252C%2522scm%2522%253A%252220140713.130102334…%2522%257D&…

星闪技术 NearLink 一种专门用于短距离数据传输的新型无线通信技术

本心、输入输出、结果 文章目录 星闪技术 NearLink 一种专门用于短距离数据传输的新型无线通信技术前言星闪技术 NearLink 的诞生背景星闪技术 NearLink 简介星闪技术 NearLink 技术是一种蓝牙技术吗星闪技术 NearLink 优势星闪技术 NearLink 应用前景弘扬爱国精神星闪技术 Nea…

10000字!图解机器学习特征工程

文章目录 引言特征工程1.特征类型1.1 结构化 vs 非结构化数据1.2 定量 vs 定性数据 2.数据清洗2.1 数据对齐2.2 缺失值处理 原文链接&#xff1a;https://www.showmeai.tech/article-detail/208 作者&#xff1a;showmeAI 引言 上图为大家熟悉的机器学习建模流程图&#xff0c;…

技术资料MF74:将图像插入单元格注释

【分享成果&#xff0c;随喜正能量】须知往生净土&#xff0c;全仗信、愿。有信、愿&#xff0c;即未得三昧、未得一心不乱&#xff0c;亦可往生。且莫只以一心不乱&#xff0c;及得念佛三昧为志事&#xff0c;不复以信、愿、净念为事。。 我给VBA的定义&#xff1a;VBA是个人…

通过Vue自带服务器实现Ajax请求跨域(vue-cli)

通过Vue自带服务器实现Ajax请求跨域&#xff08;vue-cli&#xff09; 跨域 原理&#xff1a;从A页面访问到B页面&#xff0c;并且要获取到B页面上的数据&#xff0c;而两个页面所在的端口、协议和域名中哪怕有一个不对等&#xff0c;那么这种行为就叫跨域。注意&#xff1a;类…

[LaTeX] [数学符号] \mathbb{1}的各种替代方案:解决在 LaTeX 中输入黑板粗体的数字

[LaTeX] [数学符号] \mathbb{1}的各种替代方案&#xff1a;解决在 LaTeX 中输入黑板粗体的数字_latex mathbb-CSDN博客文章浏览阅读5w次&#xff0c;点赞36次&#xff0c;收藏80次。本文介绍如何在 LaTeX 中输入黑板粗体的数字。_latex mathbbhttps://blog.csdn.net/xovee/arti…

Android Studio 查看Framework源码

1、背景 安卓系统源码量很庞大&#xff0c;选择好的开发工具和方式去开发可以提升开发效率&#xff0c;常用的开发工具有Source Insight 、Visual Studio Code、Android Studio&#xff0c;vscode适合C和C代码开发&#xff0c;java层代码无法跳转和提示&#xff0c;因此&#…

vue3基础流程

目录 1. 安装和创建项目 2. 项目结构 3. 主要文件解析 3.1 main.js 3.2 App.vue 4. 组件和Props 5. 事件处理 6. 生命周期钩子 7. Vue 3的Composition API 8. 总结和结论 响应式系统&#xff1a; 组件化&#xff1a; 易于学习&#xff1a; 灵活性&#xff1a; 社…

Java中级面试题记录(四)

一面面试题 1.Innodb的行数据存储模式 https://baijiahao.baidu.com/s?id1775090633458928876&wfrspider&forpc 2.行数据包含哪些信息&#xff1f; https://baijiahao.baidu.com/s?id1775090633458928876&wfrspider&forpc 3.MySQL在进行存储VARCHAR的时…

DDOS版-超功能记事本 Ⅲ 8.8源码

DDOS版-超功能记事本 Ⅲ 8.8源码 下载地址&#xff1a;https://user.qzone.qq.com/512526231/main

goland无法调试问题解决

goland 无法调试问题解决 golang 版本升级后&#xff0c;goland 无法进行调试了 首先请看自己下载的版本是否有误 1.apple系 M系列芯片的 arm64版本 2.apple系 intel系列芯片的x86_64 3.windows系 intel解决如下&#xff1a; 查看gopath ericsanchezErics-Mac-mini gww-api…

C/C++数据结构之深入了解线性表:顺序表、单链表、循环链表和双向链表

线性表是一种基本的数据结构&#xff0c;它在计算机科学中起着至关重要的作用。线性表用于存储一系列具有相同数据类型的元素&#xff0c;这些元素之间存在顺序关系。在C/C中&#xff0c;我们可以使用各种方式来实现线性表&#xff0c;其中包括顺序表、单链表、循环链表和双向链…