机器学习——异常检测

异常点检测(Outlier detection),⼜称为离群点检测,是找出与预期对象的⾏为差异较⼤的对象的⼀个检测过程。这些被检测出的对象被称为异常点或者离群点。异常点(outlier)是⼀个数据对象,它明显不同于其他的数据对象。异常点检测的应用也十分广泛,例如:信用卡反欺诈、工业损毁检测、广告点击反作弊、刷单检测和羊毛党检测等等。
一般异常检测是无监督学习,因为它不是二分类而是多分类问题。
在这里插入图片描述
**问题1:**为什么要用无监督异常检测方法?

很多场景没有标签或者标签很少,不能进行监督训练;而且样本总是在发生变化。

目前主流的异常检测方法的基本原理都是基于样本间的相似度:距离、密度、角度、隔离所需的难度和簇等等。

常见的异常检测有:

  • Z-Score检验——统计学方法
  • Local Outlier Factor
  • 孤立森林

Z-Score检验

通过ZScore将正态分布的数据转化为标准正态分布数据,公式下:
Z s c o r e = ( x − u ) σ Zscore = \frac{(x-u)}{\sigma} Zscore=σ(xu)
在这里插入图片描述

如果符合正态分布,则有68%的数据在± σ \sigma σ之间;95%的数据在±2 σ \sigma σ之间;有99.7%的数据在±3 σ \sigma σ之间。
但大部分场景的数据都不满足正态分布的数据。

Local Outlier Factor(LOF算法)

LOF算法是基于密度的异常检测算法,它会为每个数据点计算一个分数,通过分数的大小来判断数据是否异常。
LOF算法的流程如下:
1)⾸先对样本空间进⾏去重,分别计算每⼀个样本到样本空间内其余点的距离。
2)将步骤1中的距离升序排列。
3)指定近邻样本个数k,对于每个样本点,寻找其k近邻样本,然后计算LOF分数,作为异常分数。
在这里插入图片描述

LOF例子

还是以评分卡模型数据为例。

from pyod.models.lof import LOF
import pandas as pd
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import roc_auc_score,roc_curve,auc,recall_scoredata = pd.read_csv('Bcard.txt')
feature_lst = ['person_info','finance_info','credit_info','act_info']
# 划分数据
train = data[data.obs_mth != '2018-11-30'].reset_index().copy()
val = data[data.obs_mth == '2018-11-30'].reset_index().copy()
x = train[feature_lst]
y = train['bad_ind']
# 使用lof进行异常点检测
lof_clf = LOF(n_neighbors=20,algorithm='auto')
lof_clf.fit(x)
out_pred = lof_clf.predict_proba(x)[:,1]
train['out_pred'] = out_pred
# 确定得分边界值
key = train['out_pred'].quantile(0.95)
lof_x = train[train.out_pred<key][feature_lst]
lof_y = train[train.out_pred<key]['bad_ind']
val_x = val[feature_lst]
val_y = val['bad_ind']# 训练模型
lr_model = LogisticRegression(C=0.1,class_weight='balanced')
lr_model.fit(lof_x,lof_y)# 训练集
print('lof异常检测后训练集的ks值')
y_pred = lr_model.predict_proba(lof_x)[:,1] #取出训练集预测值
fpr_lr_train,tpr_lr_train,_ = roc_curve(lof_y,y_pred) #计算TPR和FPR
train_ks = abs(fpr_lr_train - tpr_lr_train).max() #计算训练集KS
print('train_ks : ',train_ks)#验证集
y_pred = lr_model.predict_proba(val_x)[:,1] #计算验证集预测值
fpr_lr,tpr_lr,_ = roc_curve(val_y,y_pred) #计算验证集预测值
val_ks = abs(fpr_lr - tpr_lr).max() #计算验证集KS值
print('lof异常检测后验证集的ks值')
print('val_ks : ',val_ks)from matplotlib import pyplot as plt
plt.plot(fpr_lr_train,tpr_lr_train,label = 'train LR')
plt.plot(fpr_lr,tpr_lr,label = 'evl LR')
plt.plot([0,1],[0,1],'k--')
plt.xlabel('False positive rate')
plt.ylabel('True positive rate')
plt.title('ROC Curve')
plt.legend(loc = 'best')
plt.show()

在这里插入图片描述

Isolation Forest(IF算法)

IF是采用二叉树的方法对数据进行切分,数据点在二叉树中的数据深度反应了该条数据的‘疏离’程度。整个过程也是训练跟预测两个步骤:

  • 训练:抽取多个样本,构建多棵二叉树
  • 预测:综合多棵二叉树的结果,计算每个数据点的异常值

我们以一维数据来进行简单理解IF算法的思想,我们有一个一维数据,想将A和B点切分出来:
(1)现在最大值和最小值之间随机选择一个x值,将大于x值和小于x值的数据分为两组;
(2)在两组数据中重复以上步骤,直到数据不可分,因为B点跟其他数据更远,所以只要比较少次数就能分离
(3)A点由于跟其他数据比较近,所以需要更多的次数才能切分出来。
在这里插入图片描述
我们不必了解它的公式,我们直到它最后的分值即可:

  • 如果数据x在多个二叉树的平均路径长度都比较短,得分比较接近1,则数据x越异常;
  • 如果数据x在多个二叉树的平均路径长度都比较长,则得分更接近0,则数据x越正常;
  • 如果数据x在多个二叉树的平均路径长度是平均值,则得分为0.5。

IF例子

同LOF使用一样的数据

from pyod.models.iforest import IForestdata = pd.read_csv('Bcard.txt')
feature_lst = ['person_info','finance_info','credit_info','act_info']
# 划分数据
train = data[data.obs_mth != '2018-11-30'].reset_index().copy()
val = data[data.obs_mth == '2018-11-30'].reset_index().copy()
x = train[feature_lst]
y = train['bad_ind']if_clf = IForest(behaviour='new', n_estimators=500, n_jobs=-1)
if_clf.fit(x)
out_pred = if_clf.predict_proba(x,method='linear')[:,1]
train['out_pred'] = out_predif_x = train[train.out_pred<0.7][feature_lst]
if_y = train[train.out_pred<0.7]['bad_ind']
val_x = val[feature_lst]
val_y = val['bad_ind']# 训练模型
lr_model = LogisticRegression(C=0.1,class_weight='balanced')
lr_model.fit(if_x,if_y)# 训练集
print('参数调整前的ks值')
y_pred = lr_model.predict_proba(if_x)[:,1] #取出训练集预测值
fpr_lr_train,tpr_lr_train,_ = roc_curve(if_y,y_pred) #计算TPR和FPR
train_ks = abs(fpr_lr_train - tpr_lr_train).max() #计算训练集KS
print('train_ks : ',train_ks)#验证集
y_pred = lr_model.predict_proba(val_x)[:,1] #计算验证集预测值
fpr_lr,tpr_lr,_ = roc_curve(val_y,y_pred) #计算验证集预测值
val_ks = abs(fpr_lr - tpr_lr).max() #计算验证集KS值
print('val_ks : ',val_ks)from matplotlib import pyplot as plt
plt.plot(fpr_lr_train,tpr_lr_train,label = 'train LR')
plt.plot(fpr_lr,tpr_lr,label = 'evl LR')
plt.plot([0,1],[0,1],'k--')
plt.xlabel('False positive rate')
plt.ylabel('True positive rate')
plt.title('ROC Curve')
plt.legend(loc = 'best')
plt.show()

在这里插入图片描述
验证集的KS值有一定的上升。
原数据的ks值如下:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/11869.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux工具【1】(编辑器vim、编译器gcc与g++)

vim详解 引言vimVim的三种模式及模式切换普通模式下操作底行模式下操作 gcc与ggcc的使用&#xff08;g类似&#xff09;预编译编译汇编链接静态库与动态库 总结 引言 vim&#xff08;vi improved&#xff09;编辑器是从 vi 发展出来的一个文本编辑器。 代码补全、编译及错误跳…

opencv python 训练自己的分类器

源码下载 一、分类器制作 1.样本准备 收集好你所需的正样本&#xff0c;和负样本&#xff0c;分别保存在不同文件夹 在pycharm新建项目&#xff0c;项目结构如下&#xff1a;has_mask文件夹放置正样本&#xff0c;no_mask文件夹放置负样本 安装opencv&#xff0c;把opencv包…

Day.4 刷题练习(自守数)

题目&#xff1a; 例子&#xff1a; 分析题目&#xff1a; 主要目的&#xff1a;给定一个范围小于等于N&#xff0c;在这个范围中找自守数&#xff08;自身等于平方后的尾部数据如5&#xff1a;5 ^ 2 25 &#xff0c; 然后 5 与 平方的后的尾部相等&#xff09; 思路&#x…

ancos注册中心、网关和静态化freemarker、对象存储服务MinIO

1、docker安装ancos ①&#xff1a;docker拉取镜像 docker pull nacos/nacos-server:1.2.0②&#xff1a;创建容器 docker run --env MODEstandalone --name nacos --restartalways -d -p 8848:8848 nacos/nacos-server:1.2.0③&#xff1a;访问地址&#xff1a;http://192…

Qt : day4

1.思维导图 2.服务器 #include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this);//给服务器指针实例化空间server new QTcpServer(this);}Widget::~Widget() {delete ui;…

下级平台级联视频汇聚融合平台EasyCVR,层级显示不正确的原因排查

视频汇聚平台安防监控EasyCVR可拓展性强、视频能力灵活、部署轻快&#xff0c;可支持的主流标准协议有GB28181、RTSP/Onvif、RTMP等&#xff0c;以及厂家私有协议与SDK接入&#xff0c;包括海康Ehome、海大宇等设备的SDK等&#xff0c;能对外分发RTSP、RTMP、FLV、HLS、WebRTC等…

【计算机网络】第 3 课 - 计算机网络体系结构

欢迎来到博主 Apeiron 的博客&#xff0c;祝您旅程愉快 &#xff01; 时止则止&#xff0c;时行则行。动静不失其时&#xff0c;其道光明。 目录 1、常见的计算机网络体系结构 2、计算机网络体系结构分层的必要性 2.1、物理层 2.2、数据链路层 2.3、网路层 2.4、运输层 2…

Sentinel nacos spring cloud 持久化配置---分布式/微服务流量控制

文章目录 sentinel控制台安装目标实现代码地址版本说明maven spring-cloud-starter-alibaba-sentinel依赖yml文件Nacos业务规则配置看源码配置规则SentinelProperties 总配置加载DataSourcePropertiesConfiguration 配置标准的nacos配置注册具体sentinel配置 外传 sentinel控制…

Chrome 115 有哪些值得关注的新特性?

今天带大家一起来了解一下 Chrome 115 值得关注的新特性。 滚动动画 用滚动驱动的动画是网站上非常常见的用户体验模式&#xff0c;比如当页面向前或向后滚动时&#xff0c;对应的动画也会向前或向后移动。 比如下面图中这种比较常见的&#xff0c;页面顶部的进度条随着滚动…

华为OD机试真题 Java 实现【数字涂色】【2022Q4 100分】,附详细解题思路

目录 专栏导读一、题目描述二、输入描述三、输出描述四、解题思路五、Java算法源码六、效果展示 华为OD机试 2023B卷题库疯狂收录中&#xff0c;刷题点这里 专栏导读 本专栏收录于《华为OD机试&#xff08;JAVA&#xff09;真题&#xff08;A卷B卷&#xff09;》。 刷的越多&…

Flowable-UI

title: Flowable-UI date: 2023-7-23 12:19:20 tags: - Flowable Flowable-UI 安装 手把手教大家画了这样一个流程图&#xff0c;虽然说它不是特别好用&#xff0c;但是也不是不能用&#xff0c;也能用。好了&#xff0c;那么接下来的话&#xff0c;我们这个就先告一个段落&…

客户方数据库服务器CPU负载高优化案例

客户方数据库服务器CPU负载高优化案例 背景 上周线上服务出现一个问题&#xff0c;打开某个页面&#xff0c;会导致其它接口请求响应超时&#xff0c;排查后发现数据库响应超400s&#xff0c;之前1s就可查到数据。 具体原因是有个大屏统计页面&#xff0c;会实时查看各业务服…

Netty学习(三)

文章目录 三. Netty 进阶1. 粘包与半包1.1 粘包现象服务端代码客户端代码 1.2 半包现象服务端代码客户端代码 1.3 现象分析粘包半包缘由滑动窗口MSS 限制Nagle 算法 1.4 解决方案方法1&#xff0c;短链接方法2&#xff0c;固定长度方法3&#xff0c;固定分隔符方法4&#xff0c…

QT之QMediaPlayer使用播放音频

简介 使用QMediaPlayer播放MP3格式音乐。 播放相关状态流程简述 操作&#xff1a;m_pMediaPlayer->setMedia(); &#xff08;初始化加载&#xff0c;为play()&#xff09; 状态&#xff1a; __onMediaChanged QUrl(“qrc:/sounds/Sounds/Big.mp3”) __onMediaStatusChang…

【javaSE】初识Java

目录 Java是什么 Java语言发展简史 初识Java的main方法 运行Java程序 JDK、JRE、JVM之间的关系 Java中的标识符 Java是什么 Java是一种优秀的程序设计语言&#xff0c;它具有令人赏心悦目的语法和易于理解的语义. 不仅如此&#xff0c;Java还是一个有一系列计算机软件和规…

Psim 2022仿真软件的安装--Psim电力仿真实战教程

文章目录 Psim 2022 仿真软件安装及使用教程软件介绍1.下载psim 2022安装软件&#xff0c;有需要的亲请联系作者。2.点击安装文件3.点击进行安装&#xff1a;4.安装完成&#xff0c;打开软件&#xff0c;开始仿真5.仿真模型介绍5.1.单相全控整流电路仿真5.2 三相PFC可控整流电路…

红黑树深入剖析【C++】

目录 一、红黑树概念 二、红黑树节点结构设计 三、插入操作 处理情况1 处理情况2 处理情况3 插入总结&#xff1a; 四、插入操作源码 五、红黑树验证 一、红黑树概念 红黑树&#xff0c;是一种二叉搜索树&#xff0c;但在每个结点上增加一个存储位表示结点的颜色&#xff0…

Selenium+Java环境搭建(测试系列6)

目录 前言&#xff1a; 1.浏览器 1.1下载Chrome浏览器 1.2查看Chrome浏览器版本 1.3下载Chrome浏览器的驱动 2.配置系统环境变量path 3.验证是否成功 4.出现的问题 结束语&#xff1a; 前言&#xff1a; 这节中小编给大家讲解一下有关于Selenium Java环境的搭建&…

Docker 的数据管理 与 Dockerfile

目录 Docker 的数据管理容器互联&#xff08;使用centos镜像&#xff09;Docker 镜像的创建1&#xff0e;基于现有镜像创建2&#xff0e;基于本地模板创建3&#xff0e;基于Dockerfile 创建镜像加载原理 Dockerfile 操作常用的指令&#xff08;1&#xff09;FROM 镜像&#xff…

docker—springboot服务通信

文章目录 docker—springboot服务通信一、方式1、host 二、坑点末、参考资料 docker—springboot服务通信 一、方式 1、host 步骤&#xff1a; host文件增加域名解析&#xff1a; 127.0.0.1 rabbitmqapplication.yml&#xff1a; application.yml中&#xff0c;连接方式使用…