目录
题目描述
示例1
示例2
示例3
前置知识
代码
方法一 直接合并后排序
思路
实现
复杂度
方法二 双指针
思路
实现
复杂度
方法三 逆向双指针
思路
实现
复杂度
题目描述
给你两个按 非递减顺序 排列的整数数组
nums1
和nums2
,另有两个整数m
和n
,分别表示nums1
和nums2
中的元素数目。请你 合并
nums2
到nums1
中,使合并后的数组同样按 非递减顺序 排列。注意:最终,合并后数组不应由函数返回,而是存储在数组
nums1
中。为了应对这种情况,nums1
的初始长度为m + n
,其中前m
个元素表示应合并的元素,后n
个元素为0
,应忽略。nums2
的长度为n
。
示例1
输入:nums1 = [1,2,3,0,0,0], m = 3, nums2 = [2,5,6], n = 3 输出:[1,2,2,3,5,6] 解释:需要合并 [1,2,3] 和 [2,5,6] 。 合并结果是 [1,2,2,3,5,6] ,其中斜体加粗标注的为 nums1 中的元素。
示例2
输入:nums1 = [1], m = 1, nums2 = [], n = 0 输出:[1] 解释:需要合并 [1] 和 [] 。 合并结果是 [1] 。
示例3
输入:nums1 = [0], m = 0, nums2 = [1], n = 1 输出:[1] 解释:需要合并的数组是 [] 和 [1] 。 合并结果是 [1] 。 注意,因为 m = 0 ,所以 nums1 中没有元素。nums1 中仅存的 0 仅仅是为了确保合并结果可以顺利存放到 nums1 中。
前置知识
-
快速排序
-
双指针
代码
方法一 直接合并后排序
思路
-
将数组 nums2放进数组 nums1的尾部,然后直接对整个数组进行排序
实现
class Solution {public void merge(int[] nums1, int m, int[] nums2, int n) {for (int i = 0; i != n; ++i) {nums1[m + i] = nums2[i];}Arrays.sort(nums1);}
}
复杂度
-
时间复杂度:O((m+n)log(m+n))。 排序序列长度为 m+n,套用快速排序的时间复杂度即可,平均情况为 O((m+n)log(m+n))。
-
空间复杂度:O(log(m+n))。 排序序列长度为 m+n,套用快速排序的空间复杂度即可,平均情况为 O(log(m+n))。
方法二 双指针
思路
-
两个数组看作队列,每次从两个数组头部取出比较小的数字放到结果中
实现
class Solution {public void merge(int[] nums1, int m, int[] nums2, int n) {int p1 = 0, p2 = 0;int[] sorted = new int[m + n];int cur;while (p1 < m || p2 < n) {if (p1 == m) {cur = nums2[p2++];} else if (p2 == n) {cur = nums1[p1++];} else if (nums1[p1] < nums2[p2]) {cur = nums1[p1++];} else {cur = nums2[p2++];}sorted[p1 + p2 - 1] = cur;}for (int i = 0; i != m + n; ++i) {nums1[i] = sorted[i];}}
}
复杂度
-
时间复杂度:O(m+n)。 指针移动单调递增,最多移动 m+n 次,因此时间复杂度为 O(m+n)。
-
空间复杂度:O(m+n)。 需要建立长度为 m+n 的中间数组 sorted。
方法三 逆向双指针
思路
-
两个数组看作队列,每次从两个数组头部取出比较小的数字放到结果中
实现
-
因为 nums1 的空间都集中在后面,所以从后向前处理排序的数据会更好,节省空间,一边遍历一边将值填充进去
-
设置指针 len1 和 len2 分别指向 nums1 和 nums2 的有数字尾部,从尾部值开始比较遍历,同时设置指针 len 指向 nums1 的最末尾,每次遍历比较值大小之后,则进行填充
-
当 len1<0 时遍历结束,此时 nums2 中还有数据未拷贝完全,将其直接拷贝到 nums1 的前面,最后得到结果数组
复杂度
-
时间复杂度:O(m+n)。 指针移动单调递减,最多移动 m+n 次,因此时间复杂度为 O(m+n)。
-
空间复杂度:O(1)。 直接对数组 nums1原地修改,不需要额外空间。