基于斑点鬣狗算法的无人机航迹规划-附代码

基于斑点鬣狗算法的无人机航迹规划

文章目录

  • 基于斑点鬣狗算法的无人机航迹规划
    • 1.斑点鬣狗搜索算法
    • 2.无人机飞行环境建模
    • 3.无人机航迹规划建模
    • 4.实验结果
      • 4.1地图创建
      • 4.2 航迹规划
    • 5.参考文献
    • 6.Matlab代码

摘要:本文主要介绍利用斑点鬣狗算法来优化无人机航迹规划。

1.斑点鬣狗搜索算法

斑点鬣狗算法原理请参考:https://blog.csdn.net/u011835903/article/details/107542352

2.无人机飞行环境建模

? 环境模型的建立是考验无人机是否可以圆满完成人类所赋予各项任务的基
础和前提,其中第一步便是如何描述规划空间中的障碍物。首先我们将采取函数模拟法模拟地貌特征。其函数表达式为:
z ( x , y ) = s i n ( y + a ) + b s i n ( x ) + c c o s ( d y 2 + x 2 ) + e c o s ( y ) + f s i n ( f y 2 + x 2 ) + g c o s ( y ) (1) z(x,y)=sin(y+a)+bsin(x)+ccos(d\sqrt{y^2+x^2})+ecos(y)+fsin(f\sqrt{y^2+x^2})+gcos(y)\tag{1} z(x,y)=sin(y+a)+bsin(x)+ccos(dy2+x2 )+ecos(y)+fsin(fy2+x2 )+gcos(y)(1)
其中, ( x , y ) (x, y) (x,y) 为地形上某点投影在水平面上的点坐标, z z z 则为对应点坐标的高度。式中 a , b , c , d , e , f , g a, b, c, d, e, f , g a,b,c,d,e,f,g 是常系数,想要得到不同的地貌特征可以通过改变其常系数的大小,以上建模是作为环境模型的基准地形信息。但为了得到障碍区域我们还需要在这个基准地形上叠加山峰模型,这样就可以模拟像山峰、丘陵等障碍地理信息。山峰模型的数学表达式为:
h ( x , y ) = ∑ i h i e x p [ − ( x − x o i ) 2 a i 2 − ( y − y o i ) 2 b i 2 ] + h o (2) h(x,y)=\sum_ih_iexp[-\frac{(x-x_{oi})^2}{a_i^2}-\frac{(y-y_{oi})^2}{b_i^2}]+h_o \tag{2} h(x,y)=ihiexp[ai2(xxoi)2bi2(yyoi)2]+ho(2)
式 (2)中, h o h_o ho h i h_i hi 分别表示基准地形和第 i i i座山峰的高度, ( x o i , y o i ) (xoi , y oi ) (xoi,yoi)则表示第 i座山峰的中心坐标位置,a i 和 b i 分别是第 i 座山峰沿 x 轴和 y 轴方向的坡度。由式(1)和(2),我们可以得到如下表达式:
Z ( x , y ) = m a x [ z ( x , y ) , h ( x , y ) ] (3) Z(x,y)=max[z(x,y),h(x,y)]\tag{3} Z(x,y)=max[z(x,y),h(x,y)](3)
无人机在躲避障碍物的同时也会经常遇到具有威胁飞行安全的区域,我们称之为威胁区域。这些威胁区域可以是敌人的雷达和防空导弹系统的探测威胁区域也可以是一些其它的威胁,一旦无人机进入这些区域很有可能会被击落或者坠毁。为了简化模型,本文采用半径为 r 的圆柱形区域表示威胁区域,其半径的大小决定威胁区域的覆盖范围。每一个圆柱体的中心位置是对无人机构成最大威胁的地方并向外依次减弱。

3.无人机航迹规划建模

? 在环境建模的基础上,无人机航迹规划需要考虑到在执行复杂任务的过程中自身性能约束要求,合理的设计航迹评价函数才能使得斑点鬣狗搜索算法得出的最后结果符合要求,并保证规划出的航迹是有效的。考虑到实际环境中,无人机需要不断适应变化的环境。所以在无人机路径规划过程中,最优路径会显得比较复杂,并包含许多不同的特征。基于实际的情况,本文采用较为复杂的航迹评价函数进行无人机路径规划。影响无人机性能的指标主要包括航迹长度、飞行高度、最小步长、转角代价、最大爬升角等。

? 搜索最佳路径通常与搜索最短路径是密不可分的。在无人机航迹规划过程中,航迹的长度对于大多数航迹规划任务来说也是非常重要的。众所周知,较短的路线可以节省更多的燃料和更多的时间并且发现未知威胁的几率会更低。我们一般把路径定义为无人机从起始点到终点所飞行路程的值,设一条完整的航线有 n n n个节点,其中第 i i i个航路点和第 i + 1 i+1 i+1个航路点之间的距离表示为 l i l_i li ,这两个航路点的坐标分别表示为 ( x i , y i , z i ) (x_i,y_i,z_i ) (xi,yi,zi) ( x i + 1 , y i + 1 , z i + 1 ) (x_{i+1}, y_{i+1},z_{i+1}) (xi+1,yi+1,zi+1)并分别记作 g ( i ) g(i) g(i) g ( i + 1 ) g(i+1) g(i+1)。航迹需要满足如下条件:
{ l i = ∣ ∣ g ( i + 1 ) − g ( i ) ∣ ∣ 2 L p a t h = ∑ i = 1 n − 1 l i (4) \begin{cases} l_i = ||g(i+1)-g(i)||_2\\ L_{path}=\sum_{i=1}^{n-1}l_i \end{cases}\tag{4} {li=∣∣g(i+1)g(i)2Lpath=i=1n1li(4)
在飞行的过程中会遇到障碍物或者进入威胁区域,如果无人机无法躲避障碍物或者飞入了威胁区域将面临被击落或坠毁的危险以至于无法到达终点,记为 L p a t h = ∞ L_{path}=\infty Lpath=,但是无穷函数在实际问题中很难表示,我们采用惩罚的方式进行处理。一般情况下,为了利用地形覆盖自身位置,无人机应尽可能降低高度这可以帮助自身避免一些未知雷达等威胁。但是太低的飞行高度同样会加大无人机同山体和地面的撞击几率,因此设定稳定的飞行高度是非常重要的。飞行高度不应该有太大的变化,稳定的飞行高度可以减少控制系统的负担,节省更多的燃料 。为了使无人机飞行更加安全,给出的飞行高度模型:
{ h h e i g h t = 1 n ∑ i = 0 n − 1 ( z ( i ) − z ‾ ) 2 z ‾ = 1 n ∑ i = 0 n − 1 z ( i ) (5) \begin{cases} h_{height}=\sqrt{\frac{1}{n}\sum_{i=0}^{n-1}(z(i)-\overline{z})^2}\\ \overline{z}=\frac{1}{n}\sum_{i=0}^{n-1}z(i) \end{cases}\tag{5} {hheight=n1i=0n1(z(i)z)2 z=n1i=0n1z(i)(5)
无人机的可操作性也受到其转角代价函数的限制。,在飞行过程中无人机的转角应不大于其预先设定的最大转角,转角的大小会影响其飞行的稳定性。本文的研究中,设定最大转角为 Φ Φ Φ,当前转角为 θ \theta θ并且 a i a_i ai是第 i i i段航路段向量。
{ c o s θ = a i T a i + 1 ∣ a i ∣ ∣ a i + 1 ∣ J t u r n = ∑ i = 1 n ( c o s ( Φ − c o s θ ) ) (6) \begin{cases} cos\theta =\frac{a_i^Ta_{i+1}}{|a_i||a_{i+1}|}\\ J_{turn}=\sum_{i=1}^n(cos(\Phi-cos\theta)) \end{cases}\tag{6} {cosθ=ai∣∣ai+1aiTai+1Jturn=i=1n(cos(Φcosθ))(6)
其中, ∣ a ∣ |a| a代表矢量 a a a的长度。

? 通过对以上三个方面建立了无人机航迹规划的代价函数,可以得出本文的航迹评价函数如下:
J c o s t = w 1 L p a t h + w 2 h h e i g h t + w 3 J t u r n (7) J_{cost}=w_1L_{path}+w_2h_{height}+w_3J_{turn} \tag{7} Jcost=w1Lpath+w2hheight+w3Jturn(7)
其中, J c o s t J_{cost} Jcost是总的代价函数,参数 w i w_i wi i = 1 , 2 , 3 i=1,2,3 i=1,2,3 表示每个代价函数的权值,且满足如下条件:
{ w i ≥ 0 ∑ i = 1 3 w i = 1 (8) \begin{cases} w_i\geq0 \\ \sum_{i=1}^3 w_i=1 \end{cases} \tag{8} {wi0i=13wi=1(8)
通过对总的代价函数进行有效地处理,我们可以得到由线段组成的航迹。不可否认的是得到的路径往往是仅在理论上可行,但为了实际可飞,有必要对航迹进行平滑处理。本文采用三次样条插值的方法对路径进行平滑。

4.实验结果

4.1地图创建

设置地图参数a, b, c, d, e, f , g=1。地图大小为:200*200。设置三个山峰,山峰信息如表1所示。威胁区域信息如表2所示
在这里插入图片描述

表1:山峰信息
信息山峰中心坐标山峰高度山峰X方向坡度山峰y方向坡度
山峰1[60,60]502020
山峰2[100,100]603030
山峰3[150,150]802020
表2 威胁区域信息
信息威胁区域中心坐标威胁区域半径
威胁区域1[150,50]30
威胁区域2[50,150]20

创建的地图如下:

4.2 航迹规划

设置起点坐标为[0,0,20],终点坐标为[200,200,20]。利用斑点鬣狗算法对航迹评价函数式(7)进行优化。优化结果如下:

在这里插入图片描述
在这里插入图片描述

从结果来看,斑点鬣狗算法规划出了一条比较好的路径,表明算法具有一定的优势。

5.参考文献

[1]薛建凯. 一种新型的群智能优化技术的研究与应用[D].东华大学,2020.DOI:10.27012/d.cnki.gdhuu.2020.000178.

6.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/116953.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java 基础 面试 多线程

1.多线程 1.1 线程(Thread) 线程时一个程序内部的一条执行流程,java的main方法就是由一条默认的主线程执行 1.2 多线程 多线程是指从软硬件上实现的多条执行流程的技术(多条线程由CPU负责调度执行) 许多平台都离不开多…

动手学深度学习—网络中的网络NiN(代码详解)

目录 1. NiN块2. NiN模型3. 训练模型 LeNet、AlexNet和VGG都有一个共同的设计模式: 通过一系列的卷积层与汇聚层来提取空间结构特征;然后通过全连接层对特征的表征进行处理。 如果在过程的早期使用全连接层,可能会完全放弃表征的空间结构。 …

Day 1 Vue 页面框架

现在前端框架越来越像后端了,特别是TypeScript这样的语言出现后,开发前端的体验跟后端渐渐接近了。当然,作为一个后端,直接上手前端,还是有很多坑要填的。 本次开发,前端页面框架直接选择Vue。原因很简单&…

深入浅出排序算法之归并排序

目录 1. 归并排序的原理 1.1 二路归并排序执行流程 2. 代码分析 2.1 代码设计 3. 性能分析 4. 非递归版本 1. 归并排序的原理 “归并”一词的中文含义就是合并、并入的意思,而在数据结构中的定义是将两个或者两个以上的有序表组合成一个新的有序表。 归并排序…

Python-pptx教程之一从零开始生成PPT文件

简介 python-pptx是一个用于创建、读取和更新PowerPoint(.pptx)文件的python库。 典型的用途是根据动态内容(如数据库查询、分析数据等),将这些内容自动化生成PowerPoint演示文稿,将数据可视化&#xff0c…

【IDEA配置】IDEA配置

参考视频:【idea必知必会】优化设置 告别卡顿 1. 显示内存 右击底下空白区域,出现memory indicator内存指示器,点击勾选即可显示。有的是在Settings->Appearance->Window Options里,如图所示: 2. 内存设置 …

虚拟世界游戏定制开发:创造独一无二的虚拟体验

在游戏开发领域,虚拟世界游戏定制开发是一项引人注目的任务,旨在满足客户独特的需求和愿景,创造一个完全个性化的虚拟世界游戏。这种类型的游戏开发需要专业的技能、深刻的游戏开发知识和密切的与客户合作,以确保游戏满足客户的期…

CI2454 2.4g无线MCU芯片应用

Ci2454集成MCU芯片 | Ci2454是一款集成无线收发器和 8 位 RISC(精简指令集)MCU 的SOC芯片。 #Ci2454芯片 集成MCU芯片# 中国芯片# 无线收发器特性: 工作在 2.4GHz ISM 频段 调制方式:GFSK/FSK 数据速率:2Mbps/1Mbps…

数据库基础(一)【MySQL】

文章目录 安装 MySQL修改密码连接和退出数据库服务器使用 systemctl 管理服务器进程配置数据库从文件角度看待数据库查看连接情况 安装 MySQL 这是在 Linux 中安装 MySQL 的教程:Linux 下 MySQL 安装。本系列测试用的 MySQL 版本是 5.7,机器是 centOS7.…

LabVIEW中将枚举与条件结构一起使用

LabVIEW中将枚举与条件结构一起使用 枚举是一个具有相应数值的字符串标签型列表。在LabVIEW(U8 , U16-默认值和U32)中以无符号整数形式应用。 例如,可以有一个枚举保存四个季节,在这种情况下,每个字符串都…

Go之流程控制大全: 细节、示例与最佳实践

引言 在计算机编程中,流程控制是核心的组成部分,它决定了程序应该如何根据给定的情况执行或决策。以下是Go语言所支持的流程控制结构的简要概览: 流程控制类型代码if-else条件分支if condition { } else { }for循环for initialization; con…

GoLong的学习之路(一)语法之变量与常量

目录 GoLang变量批量声明变量的初始化类型推导短变量声明匿名变量 常量iota(特殊)(需要重点记忆) GoLang go的诞生为了解决在21世纪多核和网络化环境越来越复杂的变成问题而发明的Go语言。 go语言是从Ken Thomepson发明的B语言和…

分享个包含各省、市、区的编码数据的在线静态资源脚本

在翻《SpringBootVue3》——十三尼克陈作者的大型前后端分离项目实战里面&#xff0c;在看到地址管理的部分时&#xff0c;发现了该作者记录有一个静态的地址资源脚本 这里做个记录&#xff0c;打点 一、引入js <script src"https://s.yezgea02.com/1641120061385/td…

2024王道考研计算机组成原理——指令系统

零、本章概要 指令寻址&#xff1a;解决的是PC"1"的问题 数据寻址&#xff1a;使用寄存器/内存/结合 基址寻址&#xff1a;用于多道程序的并发执行 直接寻址&#xff1a;call 0x12345678 变址寻址&#xff1a;esi edi用于循环&#xff0c;因为使用直接寻址需要一堆…

超市商品管理系统 JAVA语言设计实现

目录 一、系统介绍 二、系统下载 三、系统截图 一、系统介绍 基于VueSpringBootMySQL的超市商品管理系统&#xff0c;超市区域模块、超市货架模块、商品类型模块、商品档案模块&#xff0c;分为用户网页端和管理后台&#xff0c;基于角色的访问控制&#xff0c;可将权限精确…

【Java】<泛型>,在编译阶段约束操作的数据结构,并进行检查。

个人简介&#xff1a;Java领域新星创作者&#xff1b;阿里云技术博主、星级博主、专家博主&#xff1b;正在Java学习的路上摸爬滚打&#xff0c;记录学习的过程~ 个人主页&#xff1a;.29.的博客 学习社区&#xff1a;进去逛一逛~ JAVA泛型 泛型介绍&#xff1a; ①泛型&#…

HTML+CSS+JS+Django 实现前后端分离的科学计算器、利率计算器(附全部代码在gitcode链接)

&#x1f9ee;前后端分离计算器 &#x1f4da;git仓库链接和代码规范链接&#x1f4bc;PSP表格&#x1f387;成品展示&#x1f3c6;&#x1f3c6;科学计算器&#xff1a;1. 默认界面与页面切换2. 四则运算、取余、括号3. 清零Clear 回退Back4. 错误提示 Error5. 读取历史记录Hi…

2023年中职组“网络安全”赛项云南省竞赛任务书

2023年中职组“网络安全”赛项 云南省竞赛任务书 一、竞赛时间 总计&#xff1a;360分钟 竞赛阶段 竞赛阶段 任务阶段 竞赛任务 竞赛时间 分值 A模块 A-1 登录安全加固 180分钟 200分 A-2 本地安全策略配置 A-3 流量完整性保护 A-4 事件监控 A-5 服务加固…

VSCode 自动格式化

1.打开应用商店&#xff0c;搜索 prettier code formatter &#xff0c;选择第一个&#xff0c;点击安装。 2.安装完成后&#xff0c;点击文件&#xff0c;选择首选项&#xff0c;选择设置。 3.在搜索框内输入 save &#xff0c;勾选在保存时格式化文件。 4.随便打开一个文件&a…

Access denied for user ‘root‘@‘localhost‘ (using password:YES) 解决方案(禅道相关)

如果是忘记Mysql密码或更改权限后访问不了的问题请直接跳转以下链接&#xff1a; MySQL登录时出现Access denied for user ‘root‘‘localhost‘ (using password: YES)无法打开的解决方法 关于这个问题&#xff0c;网上查到的解决方法基本都是因为忘记Mysql密码或者用户权限问…