【通过改变压缩视频的分辨率实现高效的视频语义分割】CVPR2022论文精度

Efficient Semantic Segmentation by Altering Resolutions for Compressed Videos

  • Efficient Semantic Segmentation by Altering Resolutions for Compressed Videos
  • Basic Information:
  • 论文简要 :
  • 背景信息:
    • a. 理论背景:
    • b. 技术路线:
  • 结果:
    • a. 详细的实验设置:
    • b. 详细的实验结果:

Efficient Semantic Segmentation by Altering Resolutions for Compressed Videos

Basic Information:

Title: Efficient Semantic Segmentation by Altering Resolutions for Compressed Videos (通过改变压缩视频的分辨率实现高效的语义分割)
Authors: Yubin Hu, Yuze He, Yanghao Li, Jisheng Li, Yuxing Han, Jiangtao Wen, Yong-Jin Liu (胡宇斌, 何宇泽, 李洋浩, 李继升, 韩宇星, 温江涛, 刘永金)
Affiliation: Department of Computer Science and Technology, Tsinghua University (清华大学计算机科学与技术系)
Keywords: Video semantic segmentation, altering resolution, compressed videos, computational cost, feature fusion (视频语义分割,改变分辨率,压缩视频,计算成本,特征融合)

论文简要 :

通过改变压缩视频的分辨率,提出了一种名为AR-Seg的高效语义分割框架,通过特征融合和特征相似性训练策略,实现了对非关键帧的低分辨率处理,从而显著降低了计算成本,同时保持了高的分割准确性。

背景信息:

论文背景: 视频语义分割是一项计算量巨大的任务,由于需要对高帧率视频进行逐帧预测。过去的工作主要集中在设计紧凑模型或自适应网络策略来提高语义分割的效率,但没有考虑到影响计算成本的重要因素:输入分辨率。
过去方案: 过去的方法主要集中在设计紧凑和高效的图像分割架构,以减少每帧的计算开销,或者通过在关键帧上使用深度模型,在非关键帧上使用浅层网络来避免重复计算。
论文的Motivation: 通过观察发现,过去的方法忽略了输入分辨率对计算成本的影响。本文提出了一种新的方法,通过利用视频中的时序相关性,使用压缩视频中的运动矢量来推断和丰富低分辨率帧中缺失的局部特征,从而避免了降低分辨率带来的分割准确性损失。本文的研究动机是基于对现有方法的不足之处,并从背景知识出发,提出了新的研究思路。
方法:

a. 理论背景:

本文提出了一种名为AR-Seg的改变分辨率框架,用于压缩视频中高效的视频语义分割(VSS)。AR-Seg旨在通过在非关键帧上使用低分辨率来减少计算成本。为了防止性能下降,设计了一种名为Cross Resolution Feature Fusion(CReFF)模块,用于将高分辨率关键帧的特征映射到低分辨率非关键帧,以实现更好的空间对齐。提出了Feature Similarity Training(FST)策略,通过使用高分辨率特征对聚合特征进行监督,以保持分割准确性。在CamVid和Cityscapes数据集上的实验结果表明,AR-Seg在使用PSPNet18骨干网络时实现了最先进的性能,并节省了67%的计算成本,同时保持了高的分割准确性。

b. 技术路线:

AR-Seg框架由两个分支组成:一个用于关键帧的高分辨率(HR)分支和一个用于非关键帧的低分辨率(LR)分支。HR分支在高分辨率上预测分割结果,并提供中间特征作为LR分支的参考。LR分支与HR分支使用相同的骨干网络,并使用CReFF模块将HR特征聚合到LR特征中。聚合特征然后转换为像素级的语义标签。

结果:

a. 详细的实验设置:

在CamVid和Cityscapes数据集上评估了AR-Seg框架,用于街景视频语义分割。实验结果表明,AR-Seg在节省计算成本的同时,实现了与基于图像的方法相当或更好的性能。AR0.5-模型在减少67%计算成本的同时,实现了与1.0x分辨率基准相似的性能。与其他基于视频的方法相比,AR-Seg模型在保持单帧骨干模型准确性的同时,减少了55%以上的计算成本。

b. 详细的实验结果:

实验结果表明,AR0.6-Bise18模型在准确性和计算成本方面都表现出色。在CamVid数据集上进行了消融研究,评估了CReFF和FST方法中不同组件的重要性。验证了对关键帧特征进行变形和使用局部注意力进行融合的必要性。评估了FLA组件的设计,发现7x7邻域在计算和准确性之间取得了良好的平衡。将CReFF组件放置在最终的1x1卷积层之前可以获得最佳性能。FST策略包括MSE Loss和共享的最终卷积层,提高了分割性能。调整了LR分支的分辨率,发现AR-Seg在所有分辨率下都提高了两个骨干网络的准确性。研究了帧之间的时间间隔,发现AR0.5-PSP18在与关键帧的所有距离上都保持了高的准确性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/11695.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

云原生周刊:K8s v1.28 中的结构化身份验证配置

开源项目推荐 KubeLinter KubeLinter 是一种静态分析工具,用于检查 Kubernetes YAML 文件和 Helm 图表,以确保其中表示的应用程序遵循最佳实践。 DB Operator DB Operator 减轻了为 Kubernetes 中运行的应用程序管理 PostgreSQL 和 MySQL 实例的痛苦…

7.1 String StringBuffer 和 StringBuilder 的区别是什么? String 为什么是不可变的?

可变性 简单的来说:String 类中使用 final 关键字修饰字符数组来保存字符串,private final char value[],所以String 对象是不可变的。 补充(来自issue 675):在 Java 9 之后,String 、StringBu…

LLM Data Pipelines: 解析大语言模型训练数据集处理的复杂流程

编者按:在训练大语言模型的过程中,构建高质量的训练数据集是非常关键的一步,但关于构建大模型训练所需数据集的通用数据处理流程(Data pipelines)的相关资料极为稀少。 本文主要介绍了基于Common Crawl数据集的数据处理流程。首先,文章概述了…

复现YOLOv8改进最新MPDIoU:有效和准确的边界盒回归的损失,打败G/E/CIoU,效果明显!!!

MPDIoU: A Loss for Efficient and Accurate Bounding Box Regression 论文简介MPDIoU核心设计思路论文方法实验部分加入YOLOv5代码论文地址:https://arxiv.org/pdf/2307.07662.pdf 论文简介 边界盒回归(Bounding box regression, BBR)广泛应用于目标检测和实例分割,是目标…

【业务功能篇56】SpringBoot 日志SLF4J Logback

3.5.1 日志框架分类与选择 3.5.1.1 日志框架的分类 日志门面 (日志抽象)日志实现JCL(Jakarta Commons Logging) SLF4J(Simple Logging Facade for Java)Jul(Java Util Logging) , Log4j , Log4j2 , Logback 记录型日志框架 Jul (Java Util Logging):JDK中的日志…

ext4 - mballoc块分配机制

概述 ext4为了尽量避免block管理的碎片化有如此措施: 1.mballoc多块分配器。 buddy算法管理每个block group采用prellocation机制,氛围per-cpu local preallocation和per inode preallocation 小文件和大文件采用不同的策略小文件(具体怎么…

Python实现指定区域桌面变化监控并报警

在这篇博客中,我们将使用Python编程语言和一些常用的库来实现一个简单的区域监控和变化报警系统。我们将使用Tkinter库创建一个图形界面,允许用户选择监控区域,并使用OpenCV库进行图像处理和相似性比较,以检测区域内的变化&#x…

基于IP地址的证书实现https

基于IP地址实现传递数据的,默认的HTTP很容易被不法分子劫持数据,网络防洪是当下的互联网为确保安全,要用HTTPS协议更为妥当。 使用IP地址申请证书的主要条件,必须在申请认证过程,开放IP地址外网可以访问,包…

全方位支持图文和音视频、100+增强功能,Facebook开源数据增强库AugLy

Facebook 近日开源了数据增强库 AugLy,包含四个子库,每个子库对应不同的模态,每个库遵循相同的接口。支持四种模态:文本、图像、音频和视频。 最近,Facebook 开源了一个新的 Python 库——AugLy,该库旨在帮…

C语言每日一题:4.消失的数字+数字在升序数组中出现的次数+整数转换

消失的数字: 思路1:排序遍历 1.使用qsort排序数组判断当前数值1是否是数组下一个元素的数值。 2.如果是一直循环注意数组越界,如果不是那么当前的数组的数值1就是消失的数。 3.存在0——n的数字是第n个数没有了。循环过程中从头到尾也找不到这…

250_C++_typedef std::function<int(std::vector<int> vtBits)> fnChkSstStt

假设我们需要定义一个函数类型来表示一个能够计算整数向量中所有元素之和的函数。 首先,我们定义一个函数,它的参数是一个 std::vector 类型的整数向量,返回值是 int 类型,表示所有元素之和: int sumVectorElements(std::vector<int> vt) {int sum = 0;for (int n…

Zabbix监控之分布式部署

文章目录 Zabbix监控之分布式部署zabbix proxy概述部署zabbix-proxy节点规划基础环境准备安装proxy以及数据库配置数据库添加服务端host解析修改zabbix-proxy配置文件启动代理服务器 zabbix页面(1)在zabbix页面添加代理(2)zabbix-agent连接proxy Zabbix监控之分布式部署 zabbi…

【LeetCode】101.对称二叉树

题目 给你一个二叉树的根节点 root &#xff0c; 检查它是否轴对称。 示例 1&#xff1a; 输入&#xff1a;root [1,2,2,3,4,4,3] 输出&#xff1a;true示例 2&#xff1a; 输入&#xff1a;root [1,2,2,null,3,null,3] 输出&#xff1a;false提示&#xff1a; 树中节点数…

几个影响 cpu cache 性能因素及 cache 测试工具介绍

》内核新视界文章汇总《 文章目录 1 cache 性能及影响因素1.1 内存访问和性能比较1.2 cache line 对性能的影响1.3 L1 和 L2 缓存大小1.4 指令集并行性对 cache 性能的影响1.5 缓存关联性对 cache 的影响1.6 错误的 cacheline 共享 (缓存一致性)1.7 硬件设计 2 cpu cache benc…

让企业出海支付流程更加安全,亚马逊云科技推出支付加密服务

在咖啡店买一杯咖啡&#xff0c;在电商平台下单一件商品&#xff0c;其消费流程背后&#xff0c;都要涉及到金融支付的多个环节&#xff0c;而其中对金融数据存储和流通的加密则是保障金融安全的重要环节。 加密是保障消费者支付流程安全的最大挑战。亚马逊云科技首席安全布道…

数仓学习---15、数据仓库工作流调度

1、数据仓库工作流调度 1.1 调度工具部署 工具部署链接 1.2 新数据生成 1.2.1 用户行为日志 1、启动日志采集通道&#xff0c;包括Kafka、Flume等 &#xff08;1&#xff09;启动Zookeeper zk.sh start&#xff08;2&#xff09;启动Kafka kf.sh start&#xff08;3&…

【ROS第一讲】一、创建工作空间

【ROS第一讲】一、创建工作空间 一、工作空间1.src&#xff1a;2.build&#xff1a;3.devel&#xff1a;4.install: 二、创建工作空间1.工作空间的编译2.配置环境变量&#xff1a; 三、创建功能包 一、工作空间 1.src&#xff1a; 放置所有功能包源码的空间 2.build&#xf…

Docker 安装(Install Docker Engine from binaries)

文章目录 前言一、下载文件二、解压配置 systemd 启动&#xff08;Configure the daemon with systemd&#xff09;docker.servicedaemon.json 启动总结 前言 使用二进制包方式安装docker 。 一、下载文件 下载地址&#xff1a; https://download.docker.com/linux/static/s…

代码随想录算法训练营day53 1143.最长公共子序列 1035.不相交的线 53.最大子序和

题目链接1143.最长公共子序列 class Solution {public int longestCommonSubsequence(String text1, String text2) {char[] char1 text1.toCharArray();char[] char2 text2.toCharArray();int[][] dp new int[text1.length()1][text2.length()1];for(int i 1; i < tex…

【语音识别】- 声学,词汇和语言模型

一、说明 语音识别是指计算机通过处理人类语言的音频信号&#xff0c;将其转换为可理解的文本形式的技术。也就是说&#xff0c;它可以将人类的口语语音转换为文本&#xff0c;以便计算机能够进一步处理和理解。它是自然语言处理技术的一部分&#xff0c;被广泛应用于语音识别助…