【语音识别】- 声学,词汇和语言模型

一、说明

        语音识别是指计算机通过处理人类语言的音频信号,将其转换为可理解的文本形式的技术。也就是说,它可以将人类的口语语音转换为文本,以便计算机能够进一步处理和理解。它是自然语言处理技术的一部分,被广泛应用于语音识别助手,语音交互系统,语音搜索等领域。

二、语音识别的意图和实现

        语音识别可以被视为根据声学、发音词典和语言模型找到最佳单词序列 (W)。

        在上一篇文章中,我们学习了HMM和GMM的基础知识。现在是时候将它们放在一起来构建这些模型了。

词汇

发音词典对单词的电话序列进行建模。通过使用滑动窗口分割音频剪辑,我们生成一系列音频帧。对于每一帧,我们提取了 39 个 MFCC 特征。即,我们生成一系列特征向量 Xx₁ x₂, ..., xi ...),其中 xi 包含 39 个特征。似然 pX|W) 可以根据词典和声学模型近似。

发音词典是用马尔可夫链建模的。

HMM 模型中的自循环将电话与观察到的音频帧对齐。

这为处理发音的时间变化提供了灵活性。

给定一个经过训练的HMM模型,我们对观察结果进行解码以找到内部状态序列。这可以通过下面的格子可视化。下面的箭头演示了可能的状态转换。给定一系列观察值X,我们可以使用维特比算法来解码最佳电话序列(比如下面的红线)。

源代码修改

在本文中,我们不会重复有关HMM和GMM的背景信息。如果您需要,这是关于这两个主题的上一篇文章。它包括维特比算法,用于寻找最佳状态序列。

但是,手机不是同质的。频率的幅度从开始到结束都在变化。为了反映这一点,我们进一步将手机细分为三种状态:手机的开头、中间和结束部分。

源代码修改

这是我们从每部手机的一个状态更改为三个状态的HMM。

来源(“六”字)

        每个内部状态的可观察量将由GMM建模。

        我们可以通过在弧中写入输出分布来简化 HMM 拓扑的绘制方式。因此,弧上的标签表示输出分布(观测值),而不是将观测值绘制为节点(状态)。以下是单词“two”的 HMM 拓扑,其中包含 2 部电话,每部电话具有三种状态。弧的标签表示声学模型 (GMM)。

        给定电话 W 的观测值 X 的可能性是根据所有可能路径的总和计算得出的。

        对于每个路径,概率等于路径的概率乘以给定内部状态的观测值的概率。第二种概率将由 m 分量 GMM 建模。所以所有路径的总概率相等

        在实践中,我们使用对数似然(log(Px|w)))来避免下溢问题。这是HMM模型,每个电话使用三种状态来识别数字。

        为了处理演讲中的沉默、噪音和填充的停顿,我们可以将它们建模为 SIL,并将其视为另一部手机。

        然而,这些静音声音更难捕捉。我们可以用 5 个内部状态而不是 <> 个来建模它。对于某些 ASR,我们还可能使用不同的手机进行不同类型的静音和填充暂停。

        我们还可以引入跳过弧,即具有空输入 (ε) 的弧,以对话语中的跳过声音进行建模。

三、上下文相关电话

        关节取决于之前和之后的电话(共关节)。声音根据单词内或单词之间的周围上下文而变化。例如,同位素(音素的声学实现)可能是跨词边界共发音的结果。相邻电话对语音变化的影响很大。例如,如果我们把手放在嘴前,当我们发音 /p/ 代表“旋转”和 /p/ 代表“pin”时,我们会感觉到气流的差异。

        在构建复杂的声学模型时,我们不应该独立于其上下文来处理手机。音频帧的标签应包括电话及其上下文。如下图所示,对于音素 /eh/,频谱图在不同的上下文下是不同的。

因此,给定下面的音频帧,我们应该将它们分别标记为 /eh/,上下文 (/w/, /d/)、(/y/, /l/) 和 (/eh/, /n/)。

        这称为三音器

        从源代码修改

        三音 s-iy+l 表示电话 /iy/ 前面是 /s/,后跟 /l/。如果忽略上下文,则前面的所有三个音频帧都引用 /iy/。但在上下文相关的方案中,这三个帧将被归类为三个不同的 CD 电话。但请注意,三音符有很多符号。即使对于这个系列,也使用了几种不同的符号。

        以下是分别使用电话和三音器表示“杯子”一词的示例。手机或三部电话都将由三种内部状态建模。我们不会增加表示“电话”的状态数量。我们只是扩展标签,以便我们可以以更高的粒度对它们进行分类。

源代码修改

然而,这有一个主要缺点。比如说,我们最初有 50 部手机。HMM 模型将有 50 × 3 个内部状态(每部手机的开始、中间和结束状态)。对于三音器,我们有 50³ × 3 个三音器状态,即每部电话 50² 个三音器。状态的分解数变得无法管理。

国家捆绑

幸运的是,三音器的某些组合很难与频谱图区分开来。实际上,可能的三音位数大于观察到的三音位数。

因此,某些州可以共享相同的GMM模型。这称为状态绑定

要找到这样的聚类,我们可以参考电话的表达方式:停止、鼻音、咝咝声、元音、侧音等......我们创建了一个决策树来探索对可以共享相同GMM模型的三音器进行聚类的可能方法。

通常,我们使用训练数据构建此语音决策树。让我们探索构建树的另一种可能性。以下是在不同语境下说 /p/ 的不同方式。

对于每部手机,我们创建一个决策树,其中包含基于左右上下文的决策树桩。树的叶子聚集了可以用相同的GMM模型建模的三音器。

我们可以应用决策树技术来避免过度拟合。例如,我们可以限制叶节点的数量和/或树的深度。我们的训练目标是最大限度地提高最终GMM模型训练数据的可能性。以下是我们如何使用状态绑定从手机演变为三音机。对于每部手机,我们现在有更多的子类别(三音器)。我们使用GMM而不是简单的高斯来建模它们。

四、连续语音识别

        单字语音识别的概念可以通过HMM模型扩展到连续语音。我们在HMM中添加弧线以将单词连接在一起。

五、语言模型

        即使音频剪辑在语法上可能不完美或跳过了单词,我们仍然假设我们的音频剪辑在语法和语义上是合理的。因此,如果我们在解码中包含语言模型,我们可以提高 ASR 的准确性。

双格拉姆模型

语言模型计算单词序列的可能性。

在双语(又名 2 克)语言模型中,当前单词仅取决于最后一个单词。

例如

让我们看一下马尔可夫链,如果我们将双字母语言模型与发音词典集成在一起。下面的三个词典分别用于单词一、二和零。然后我们用双元语言模型将它们连接在一起,转移概率像p(one|two)。

计算 P(“零”|”二“),我们抓取语料库(例如来自包含 23M 字的《华尔街日报》语料库)并计算

如果语言模型依赖于最后 2 个单词,则称为三元组。

源代码修改

n-gram 取决于最后的 n-1 个单词。这是双元组和三元组的状态图。对于三元组模型,每个节点表示具有最后两个单词的状态,而不仅仅是一个单词。

这是使用三元组语言模型的可视化。

六、平滑

即使23M个单词听起来也很多,但语料库仍然可能包含合法的单词组合。对于三元组或其他 n-gram,这种情况变得更糟。通常,三元组或 n 元语法模型的数据很少。如果我们将《华尔街日报》的尸体分成两半,一组数据中36.6%的三卦(4.32M / 11.8M)将不会在另一半中看到。这很糟糕,因为我们训练模型说这些合法序列的概率为零。

加一平滑

让我们先从 unigram 看问题。我们问题的一个解决方案是在所有计数中添加一个偏移量 k(比如 1)以调整 PW) 的概率,这样即使我们没有在语料库中看到它们,P(W) 也会都是正数。以下是平滑计数和人为喷射计数后的平滑概率。

源代码修改

但是很难确定k的正确值。但是让我们考虑一下平滑的原理是什么。如果我们没有足够的数据来做出估计,我们会回退到与原始统计数据密切相关的其他统计数据,并显示出更准确。然后,我们根据这些统计数据插值我们的最终答案。例如,如果在语料库中没有观察到双元词,我们可以从出现一次的双元词中借用统计数据。

良好的图灵平滑

让我们回到 n-gram 模型进行讨论。平滑的一般思想是重新插值训练数据中看到的计数,以伴随测试数据中看不见的单词组合。在这个过程中,我们重新洗牌计数并压缩看到的单词的概率,以适应看不见的n元语法。

一种可能性是将平滑计数 r* 和概率 p 计算为:

源代码修改

直观地说,我们用具有“r + 1”计数的上层n元语法来平滑概率质量

对于看不见的 n 元语法,我们通过使用具有单次出现的 n 元语法数 (n₁) 来计算其概率。

但在某些情况下,上层 (r+1) 的 n 元语法为零。我们将首先应用插值 S 来平滑计数。

目前,我们不需要进一步详细说明。我们将继续介绍另一种更有趣的平滑方法。但是,如果您对此方法感兴趣,可以阅读本文以获取更多信息。

卡茨平滑

Katz 平滑是在数据稀疏时平滑统计信息的常用方法之一。对于双元模型,平滑计数和概率的计算公式为:

此方法基于折扣概念,我们降低某些类别的计数,以将计数重新分配给训练数据集中计数为零的单词。

如果计数高于阈值(例如 5),则折扣 d 等于 1,即我们将使用实际计数。他们有足够的数据,因此相应的概率是可靠的。对于计数较低的单词组合,我们希望折扣 d 与好图灵平滑成正比。

此外,我们希望从折扣中保存的计数等于 n₁,Good-Tuuring 将其分配给零计数。

为了满足这两个限制,折扣变为

在良图灵平滑中,每个具有零计数的 n 元语法都具有相同的平滑计数。对于 Katz 平滑,我们会做得更好。α的选择是这样

因此,在重新洗牌计数后,双字母中第一个单词给出的总体统计数据将与统计数据相匹配。我们将平滑计数计算为:

因此,即使训练数据集中不存在单词对,如果第二个单词 wi 很受欢迎,我们将平滑计数调整得更高。

α等于

直观地说,如果有许多低计数的单词对以相同的第一个单词开头,则平滑计数会增加。

在这种情况下,我们预计(或预测)具有相同第一个单词的许多其他对将出现在测试中,而不是训练中。实证结果表明,Katz 平滑能够很好地平滑稀疏数据概率。同样,如果您想更好地了解平滑,请参阅本文。

退避模型

Katz 平滑是一个退避模型,当我们找不到任何 n 元语法的出现时,我们回退,即如果我们找不到 n-gram 的任何出现,我们用 n-1 克估计它。但是在 n-1 克中也没有出现,我们不断回落,直到找到非零出现计数。退避概率的计算公式为:

其中 α 和 P 定义为:

每当我们回退到较低跨度的语言模型时,我们都需要用α来缩放概率,以确保所有概率的总和为 1。

让我们举一个例子来阐明这个概念。假设我们从未在我们的训练语料库中找到 5 克的“第 10 个符号是 obelus”。因此,我们必须回退到 4 克模型来计算概率。

P(Obelus | 符号为 an) 通过计算以下相应的出现次数来计算:

最后,我们计算α来重新规范概率。

这是最终的平滑计数和概率。

七、接下去的内容

        现在,我们知道如何对 ASR 进行建模。但是,我们如何使用这些模型来解码话语呢?

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/11674.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

项目播报 | 新基德携手璞华易研PLM,打造企业新一代研发管理平台

近日&#xff0c;“新基德PLM&#xff08;Product Lifecycle Management&#xff0c;产品生命周期管理&#xff09;项目”在新基德&#xff08;深圳&#xff09;电子有限公司&#xff08;以下简称&#xff1a;新基德&#xff09;正式启动。新基德是一家集手机研发、生产、销售、…

基于深度学习的高精度六类海船检测识别系统(PyTorch+Pyside6+YOLOv5模型)

摘要&#xff1a;基于深度学习的高精度六类海船检测识别系统可用于日常生活中检测与定位海船目标&#xff08;散装货船&#xff08;bulk cargo carrier&#xff09;、集装箱船&#xff08;container ship&#xff09;、渔船&#xff08;fishing boat&#xff09;、普通货船&…

【Docker】Docker Compose的配置与部署

文章目录 一、Docker Compose1. Docker Compose 的概述2. Docker Compose 三大的概念3. Docker Compose 环境安装二、YAML 文件格式及编写注意事项1. YAML 文件格式2. YAML 格式的注意事项3. YAML 数据结构3.1 基本类型3.2 实例3.3 YAML 特殊类型文本块锚点与引用三、Docker Co…

JAVA面试总结-Redis篇章(四)——双写一致性

JAVA面试总结-Redis篇章&#xff08;四&#xff09;——双写一致性 问&#xff1a;redis 做为缓存&#xff0c;mysql的数据如何与redis进行同步呢&#xff1f;第一种情况&#xff0c;如果你的项目一致性要求高的话 采用以下逻辑我们应该先删除缓存&#xff0c;再修改数据库&…

栈粉碎原理分析

栈粉碎原理分析 源代码如下 #include <stdio.h>void function(int a, int b) {char buffer[12];gets(buffer);//long* ret (long *) ((long)buffer28);//*ret *ret 7;return; }void main() {int x;x 0;function(1,2);x 1;printf("%d\n",x); } 由解注释前…

qt服务器 网络聊天室

widget.cpp #include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this);//给服务器指针实例化空间server new QTcpServer(this); }Widget::~Widget() {delete ui; }//启动…

暴力猴插件简明开发教程->百度首页默认设置为我的关注

文章目录 暴力猴插件开发简明教程->百度首页默认设置为我的关注缘起缘灭思路实现尾声 暴力猴插件开发简明教程->百度首页默认设置为我的关注 缘起 在我的百度首页有很多自己设置的导航链接(接近100个),里面放了我常用的网站, 如下图 但是最近一段时间, 我发现百度做了一…

智能合约安全审计

智能合约安全审计的意义 智能合约审计用于整个 DeFi 生态系统&#xff0c;通过对协议代码的深入审查&#xff0c;可以帮助解决识别错误、低效代码以及这些问题。智能合约具有不可篡改的特点&#xff0c;这使得审计成为任何区块链项目安全流程的关键部分。 代码审计对任何应用…

【牛客面试必刷TOP101】Day1.反转链表和合并两个排序的链表

作者简介&#xff1a;大家好&#xff0c;我是未央&#xff1b; 博客首页&#xff1a;未央.303 系列专栏&#xff1a;牛客面试必刷TOP101 每日一句&#xff1a;人的一生&#xff0c;可以有所作为的时机只有一次&#xff0c;那就是现在&#xff01;&#xff01;&#xff01;&…

详细分析Python中运算符“==“和“is“的区别

目录 Python中运算符"" Python中运算符"is" ""和"is"的区别 总结 Python中运算符"" 在Python中&#xff0c;双等号运算符"" 用于比较两个值是否相等。它返回一个布尔值&#xff0c;即True或False&#xff0c;…

C# 使用opencv从图片识别人脸示例

1.用chatgpt帮我写了一个示例 using System; using Emgu.CV; using Emgu.CV.CvEnum; using Emgu.CV.Structure;class Program {static void Main(string[] args){// 加载人脸分类器CascadeClassifier faceCascade new CascadeClassifier("haarcascade_frontalface_defau…

JenKins工作流程

程序员提交代码到Git/SVN仓库&#xff0c;触发钩子程序向 JenKins 进行通知&#xff0c;Jenkins 调用Git/SVN插件获取源码&#xff0c;调用Maven打包为war包&#xff0c;调用Deploy to web container插件部署到Tomcat服务器。

Redis哨兵模式

Redis哨兵模式 一、服务器准备二、安装redis1.Master服务器2.SlaveFirst服务器3.SlaveSecond服务器 三、依次开启Redis服务器四、开启哨兵1.修改Master哨兵配置文件2.修改SlaveFirst哨兵配置文件3.修改SlaveSecond哨兵配置文件4.开启哨兵5.验证是否开启成功6.主从配置如下五、挂…

【替换】批量替换命令文件名称或者文件内容

你是否困扰过&#xff0c;每次文件F2进行修改&#xff0c;十几个没关系&#xff0c;百来个写代码麻烦&#xff0c;那就使用shell命令吧 执行语句 先养成习惯查询验证&#xff0c;因为是批量替换&#xff0c;为了防止全局替换嘎嘎叫 替换文件名 # 【习惯】先使用顾虑查询&…

最新基于Citespace、vosviewer、R语言的文献计量学可视化分析技术及全流程文献可视化SCI论文高效写作方法

文献计量学是指用数学和统计学的方法&#xff0c;定量地分析一切知识载体的交叉科学。它是集数学、统计学、文献学为一体&#xff0c;注重量化的综合性知识体系。特别是&#xff0c;信息可视化技术手段和方法的运用&#xff0c;可直观的展示主题的研究发展历程、研究现状、研究…

收藏这11个插画网站,插画师必备!

无论是在哪种设计工作中&#xff0c;插画素材都是比较常用的素材。今天本文整理了11个好用的插画工具&#xff0c;能帮助设计师轻松绘制出插画&#xff0c;一起来看看吧&#xff01; 1、即时设计 即时设计是一款国产的&#xff0c;省心省力的插画工具。它为设计师提供了简单易…

python实现某品牌数据采集

某品牌数据采集 采集需求 地址&#xff1a;http://www.winshangdata.com/brandList 需求&#xff1a;用scrapy框架采集本站数据&#xff0c;至少抓取5个分类&#xff0c;数据量要求5000以上 采集字段&#xff1a;标题、创建时间、开店方式、合作期限、面积要求 网页分析 …

大模型部署框架 FastLLM 实现细节解析

0x0. 前言 接着 大模型部署框架 FastLLM 简要解析 这篇文章首先梳理了一下FastLLM的调用链和关键的数据结构&#xff0c;然后解析了 FastLLM 的一些实现细节和CPU/GPU后端实现采用的优化技巧。 0x1. 调用链和数据结构解析 以chatglm-6b的支持为例&#xff0c;函数入口在 htt…

NLP实验案例100个(1-5)

实验一 array数组&#xff08;01&#xff09; 一、实验目的及要求 1.安装numpy环境&#xff0c;掌握基本的数组知识以及操作。 二、实验设备&#xff08;环境&#xff09;及要求 开发环境&#xff1a;jupyter notebook 开发语言以及相关的库&#xff1a;python开发语言、nu…

微信小程序开发,小程序类目符合,线上版本无权限申请wx.getLocation接口

我开发 的小程序类目符合wx.getLocation接口的申请标准 但是却还是显示无权限申请 后来研究好久才发现&#xff0c;小程序需要在发布线上版本时提交用户隐私保护指引 如未设置也可以在 设置-服务内容声明-用户隐私保护指引-声明处理用户信息项并补充填写后提交用户隐私协议审核…