Python学习——Day10

一、sys模块

概述:Python 的 sys 模块提供访问解释器使用或维护的变量,和与解释器进行交互的函数。通俗来讲,sys 模块为程序与 Python 解释器的交互,提供了一系列的函数和变量,用于操控 Python 运行时的环境

sys.argv    实现从程序外部向程序传递参数

      sys.argv 变量是一个包含了命令行参数的字符串列表,利用命令行向程序传递参数。其中,脚本的名称总是 sys.argv 列表的第一个参数。

import sys
print(sys.argv[0])   #sys.argv[0]表示代码本身的文件路径
print("命令行参数如下:")
for i in sys.argv:print(i)命令行输入参数如下:
D:\st13\python\1.20\python lx.py Welcome to Xian运行结果:
lx.py                #sys.argv[0]
命令行参数如下:
lx.py
Welcome
to
Xian

sys.path

获取指定模块搜索路径的目录名列表,列表中的第一项为当前的工作目录

import sys
print(sys.path)运行结果:
['D:\\st13\\python\\1.20', 'C:\\Python36\\python36.zip', 'C:\\Python36\\DLLs', 
'C:\\Python36\\lib', 'C:\\Python36', 'C:\\Python36\\lib\\site-packages']

 sys.exit([arg])   

       一般情况下执行到主程序末尾,解释器自动退出,但是如果需要中途退出程序,可以调用 sys.exit() 函数,带有一个可选的整数参数返回给调用它的程序,表示你可以在主程序中捕获对 sys.exit() 的调用。(0是正常退出,其他为异常)当然也可以用字符串参数,表示错误不成功的报错信息。

下面的例子,首先打印 'Hello',执行完 sys.exit(1),执行 except 语句,将 '中途退出' 作为参数传递给函数 exitfunc(),然后将 '中途退出' 打印出来,程序正常退出,不执行后面的 print("Welcome") 语句

import sys
def exitfunc(value):print(value)sys.exit(0)
print("Hello")
try:sys.exit(1)
except SystemExit as value:exitfunc('中途退出')   
print("Welcome")运行结果:
Hello
中途退出

sys.copyright  包含 Python 解释器有关的版权信息的字符串

>>> sys.copyright
'Copyright (c) 2001-2019 Python Software Foundation.\nAll Rights Reserved.\n\nCopyright (c) 2000 BeOpen.com.\nAll Rights Reserved.\n\nCopyright (c) 1995-2001 Corporation for National Research Initiatives.\nAll Rights Reserved.\n\nCopyright (c) 1991-1995 Stichting Mathematisch Centrum, Amsterdam.\nAll Rights Reserved.'

sys.getrefcount(<object>)

  • 返回<object>的引用次数。
  • 引用次数会比期望值值多一个,因为它包含getrefcount()参数的临时引用。
>>> class Test():
>>>     pass
>>> t = Test()
>>> sys.getrefcount(t) # t 本身是Test,所以被引用了一次。      
2

sys.getrecursionlimit()

  • 返回当前递归的限制也就是Python解释器堆栈最大深度的值。
  • 该限制可防止无限递归导致C堆栈溢出和Python崩溃。它可以通过setrecursionlimit()设置。
>>> sys.getrecursionlimit()
1000

sys.setrecursionlimit(<limit>)

  • 设置Python解释器的堆栈最大深度为<limit>。

  • 该限制可防止无限递归导致C堆栈溢出和Python崩溃。

  • 最高可能的限制取决于平台

>>> sys.setrecursionlimit(999)
>>> sys.getrecursionlimit()
999

sys.getsizeof(<object>, <default>)

  • 返回<object>的大小。
  • 以字节为单位。
>>> class Test():
>>>     pass
>>> t = Test()
>>> sys.getsizeof(t)
64

sys.hash_info

  • 一个包含哈希参数的元祖。
  • 返回的属性包含:
>>>sys.hash_info
sys.hash_info(width=64, modulus=2305843009213693951, inf=314159, nan=0, imag=1000003, algorithm='siphash24', hash_bits=64, seed_bits=128, cutoff=0)

参考网站:

大师兄的Python学习笔记(六): 常用库之sys包 - 简书

二、time模块

 time.time( )返回当前时间的时间戳

import time
print(time.time())
# 1596760621.3079221

time.ctime([secs])返回当前时间

      把一个时间戳(按秒计算的浮点数)转化为time.asctime()的形式。如果参数未给或者为None的时候,将会默认time.time()为参数

import time
print(time.localtime())
# time.struct_time(tm_year=2020, tm_mon=8, tm_mday=7, tm_hour=8, tm_min=38, tm_sec=57, tm_wday=4, tm_yday=220, tm_isdst=0)

time.localtime([secs])将一个时间戳转换为当前时区的struct_time

import time
print(time.localtime())
# time.struct_time(tm_year=2020, tm_mon=8, tm_mday=7, tm_hour=8, tm_min=38, tm_sec=57, tm_wday=4, tm_yday=220, tm_isdst=0)

time.sleep(secs)线程推迟指定的时间运行。单位为秒

import time
time.sleep(2)
print("我执行了...")
# 线程推迟2秒后执行

time.mktime(t)将一个struct_time转化为时间戳

time.mktime(time.localtime())
#Output: 1634864031.0

time.sleep(secs)线程推迟指定的时间运行。单位为秒

import time
time.sleep(2)
print("我执行了...")
# 线程推迟2秒后执行

time.strftime(format[, t])

        把一个代表时间的元组或者struct_time(如由time.localtime()和time.gmtime()返回)转化为格式化的时间字符串。如果t未指定,将传入time.localtime()。如果元组中任何一个元素越界,ValueError的错误将会被抛出

time.strftime("%Y-%m-%d %X", time.localtime())
time.strftime("%Y-%m-%d %x", time.localtime())
Output1: '2021-10-22 09:13:55'
Output2: '2021-10-22 10/22/21'

time.strptime(string[, format])

    把一个格式化时间字符串转化为struct_time。实际上它和strftime()是逆操作。在这个函数中,format默认为:"%a %b %d %H:%M:%S %Y" 

time.strptime('2011-05-05 16:37:06', '%Y-%m-%d %X')
Output: time.struct_time(tm_year=2011, tm_mon=5, tm_mday=5, tm_hour=16, tm_min=37, tm_sec=6, tm_wday=3, tm_yday=125, tm_isdst=-1)

三、面向对象

  • 类(Class): 用来描述具有相同的属性和方法的对象的集合。它定义了该集合中每个对象所共有的属性和方法。对象是类的实例。
  • 方法:类中定义的函数。
  • 类变量:类变量在整个实例化的对象中是公用的。类变量定义在类中且在函数体之外。类变量通常不作为实例变量使用。
  • 数据成员:类变量或者实例变量用于处理类及其实例对象的相关的数据。
  • 方法重写:如果从父类继承的方法不能满足子类的需求,可以对其进行改写,这个过程叫方法的覆盖(override),也称为方法的重写。
  • 局部变量:定义在方法中的变量,只作用于当前实例的类。
  • 实例变量:在类的声明中,属性是用变量来表示的,这种变量就称为实例变量,实例变量就是一个用 self 修饰的变量。
  • 继承:即一个派生类(derived class)继承基类(base class)的字段和方法。继承也允许把一个派生类的对象作为一个基类对象对待。例如,有这样一个设计:一个Dog类型的对象派生自Animal类,这是模拟"是一个(is-a)"关系(例图,Dog是一个Animal)。
  • 实例化:创建一个类的实例,类的具体对象。
  • 对象:通过类定义的数据结构实例。对象包括两个数据成员(类变量和实例变量)和方法。

类定义

class ClassName:      #class  类名 :

 类对象

类对象支持两种操作:属性引用和实例化

属性引用使用和 Python 中所有的属性引用一样的标准语法:obj.name

#!/usr/bin/python3class MyClass:"""一个简单的类实例"""i = 12345def f(self):return 'hello world'# 实例化类
x = MyClass()# 访问类的属性和方法
print("MyClass 类的属性 i 为:", x.i)
print("MyClass 类的方法 f 输出为:", x.f())

类有一个名为 __init__() 的特殊方法(构造方法),该方法在类实例化时会自动调用,像下面这样:

def __init__(self):
    self.data = []

 类定义了 __init__() 方法,类的实例化操作会自动调用 __init__() 方法

class Complex:def __init__(self, realpart, imagpart):self.r = realpartself.i = imagpart
x = Complex(3.0, -4.5)
print(x.r, x.i)   # 输出结果:3.0 -4.5

self代表类的实例,而非类

类的方法与普通的函数只有一个特别的区别——它们必须有一个额外的第一个参数名称, 按照惯例它的名称是 self

类的方法

在类的内部,使用 def 关键字来定义一个方法,与一般函数定义不同,类方法必须包含参数 self, 且为第一个参数。

self 代表的是类的实例:

#类定义
class people:#定义基本属性name = ''age = 0#定义私有属性,私有属性在类外部无法直接进行访问__weight = 0#定义构造方法def __init__(self,n,a,w):self.name = nself.age = aself.__weight = wdef speak(self):print("%s 说: 我 %d 岁。" %(self.name,self.age))# 实例化类
p = people('runoob',10,30)
p.speak()

runoob 说: 我 10 岁。

类属性与方法

类的私有属性

__private_attrs:(private:私有的  attrs:属性)两个下划线开头,声明该属性为私有,不能在类的外部被使用或直接访问。在类内部的方法中使用时 self.__private_attrs

类的方法

在类的内部,使用 def 关键字来定义一个方法,与一般函数定义不同,类方法必须包含参数 self,且为第一个参数,self 代表的是类的实例。

self 的名字并不是规定死的,也可以使用 this,但是最好还是按照约定使用 self。

类的私有方法

__private_method:两个下划线开头,声明该方法为私有方法,只能在类的内部调用 ,不能在类的外部调用。self.__private_methods

实例

类的私有属性实例如下:

class JustCounter:__secretCount = 0  # 私有变量publicCount = 0    # 公开变量def count(self):self.__secretCount += 1self.publicCount += 1print (self.__secretCount)counter = JustCounter()
counter.count()
counter.count()
print (counter.publicCount)
print (counter.__secretCount)  # 报错,实例不能访问私有变量

1
2
2
Traceback (most recent call last):
  File "test.py", line 16, in <module>
    print (counter.__secretCount)  # 报错,实例不能访问私有变量
AttributeError: 'JustCounter' object has no attribute '__secretCount'

 私有化

Python中的私有,事实上是不存在的,只是对私有的属性或者方法进行重名,将__属性  改名为  __类名__ 属性

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/115381.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

图像识别在自动驾驶汽车中的多传感器融合技术

摘要&#xff1a; 介绍文章的主要观点和发现。 引言&#xff1a; 自动驾驶汽车的兴起和重要性。多传感器融合技术在自动驾驶中的关键作用。 第一部分&#xff1a;图像识别技术 图像识别的基本原理。图像传感器和摄像头在自动驾驶中的应用。深度学习和卷积神经网络&#xff…

Typora的相关配置(Typora主题、字体、快捷键、习惯)

Typora的相关配置(Typora主题、字体、快捷键、习惯) 文章目录 Typora的相关配置(Typora主题、字体、快捷键、习惯)[toc]一、主题配置二、字体配置查看字体名称是否可以被识别&#xff1a;如果未能正确识别&#xff1a; 三、习惯配置四、快捷键配置更改提供的功能的快捷键&#…

常见的测试理论面试问题

1.请解释软件生存周期是什么&#xff1f; 软件生存周期是指从软件开发到维护的过程&#xff0c;包括可行性研究、需求分析、软件设计、编码、测试、发布和维护等活动。这个过程也被称为“生命周期模型”。 2.软件测试的目的是什么&#xff1f; 软件测试的目的是发现软件中的错…

前端react入门day01-了解react和JSX基础

(创作不易&#xff0c;感谢有你&#xff0c;你的支持&#xff0c;就是我前行的最大动力&#xff0c;如果看完对你有帮助&#xff0c;请留下您的足迹&#xff09; 目录 React介绍 React是什么 React的优势 React的市场情况 开发环境搭建 使用create-react-app快速搭建…

python【多线程、单线程、异步编程】三个版本--在爬虫中的应用

并发编程在爬虫中的应用 之前的课程&#xff0c;我们已经为大家介绍了 Python 中的多线程、多进程和异步编程&#xff0c;通过这三种手段&#xff0c;我们可以实现并发或并行编程&#xff0c;这一方面可以加速代码的执行&#xff0c;另一方面也可以带来更好的用户体验。爬虫程…

概念解析 | 毫米波雷达与计算机视觉的融合

注1:本文系“概念解析”系列之一,致力于简洁清晰地解释、辨析复杂而专业的概念。本次辨析的概念是:毫米波雷达与计算机视觉的融合。 毫米波雷达与计算机视觉的融合 Sensors | Free Full-Text | MmWave Radar and Vision Fusion for Object Detection in Autonomous Driving: A …

一维数组赋值给二维数组---单个循环赋值---memcpy赋值

一, 逐个点的赋值(单个循环) 一维数组又[56],是一个30个元素的数组,将他赋值给一个[56]五行六列的二维矩阵中,一位数组和二维矩阵的 坐标转换:[i/列数][i%列数] // 赋值给二维矩阵// i从0~一维数组个个数,仅一个循环for (int i 0; i < rows * cols; i){matrix[i / cols][i…

FFMPEG之example编译

FFMPEG源码下载:Download FFmpeg 编译需配置的库: sudo apt-get install yasm sudo apt-get install libsdl1.2-dev sudo apt-get install libsdl2-dev 编译流程: ./configure --disable-x86asm --prefix=路径 --enable-shared 按照提示添加 --dis…

FDWS9510L-F085车规级 PowerTrench系列 P沟道增强型MOS管

PowerTrench MOSFET 是优化的电源开关&#xff0c;可提高系统效率和功率密度。 它们组合了小栅极电荷 (Qg)、小反向恢复电荷 (Qrr) 和软性反向恢复主体二极管&#xff0c;有助于快速切换交流/直流电源中的同步整流。 采用屏蔽栅极结构&#xff0c;可提供电荷平衡。 利用这一先进…

RHCE8 资料整理(三)

RHCE8 资料整理 第三篇 网络相关配置第11章 网络配置11.1 网络基础知识11.2 查看网络信息11.3 图形化界面修改11.4 通过配置文件修改11.5 命令行管理11.6 主机名的设置 第12章 ssh12.1 ssh基本用法12.2 打开远程图形化界面12.3 ssh无密码登录12.4 ssh安全设置12.5 ssh限制用户1…

【2024秋招】2023-8-5-小红书-数据引擎团队后端开发提前批面经

1 面试官介绍 OLAP引擎&#xff0c;离线引擎&#xff0c;大数据分析中间件 2 自我介绍 缺点&#xff1a; &#xff08;1&#xff09;面试官让重点介绍自己最在行的项目&#xff0c;我真的在自我介绍上扯了一些别的东西… &#xff08;2&#xff09;在面试的时候因为想看简…

Webots将节点复制到不同工程中

我们要将A工程的节点复制到B工程中。 先将两个工程调成未开始仿真模式 将A中的节点复制 选中节点wall&#xff0c;右击选择Export然后保存为.wbo格式 打开B工程 点击新增&#xff0c;再点击Import&#xff0c;选择刚刚导出的文件 成功导入

k8s kubernetes 1.23.6 + flannel公网环境安装

准备环境&#xff0c;必须是同一个云服务厂商&#xff0c;如&#xff1a;华为&#xff0c;阿里、腾讯等&#xff0c;不要存在跨平台安装K8S&#xff0c;跨平台安装需要处理网络隧道才能实现所有节点在一个网络集群中&#xff0c;这里推荐使用同一家云服务厂商安装即可 这里使用…

计算属性和侦听属性以及方法有什么区别,本文以计算一个数组中所有偶数的和为例

计算属性(computed)是Vue中的一个特殊属性&#xff0c;它根据依赖的数据进行计算&#xff0c;并返回计算结果。计算属性的值会根据其相关依赖项的变化而自动更新&#xff0c;类似于一个响应式的缓存。计算属性可以用来处理一些复杂的逻辑计算&#xff0c;避免在模板中编写过多的…

计算机考研自命题(4)

1、C语言-通项求和 1、编写程序:求aaaaaaaaaaaaaaa…aaa的和&#xff0c;需要写一个函数fn(a,n)实现n个a的拼接&#xff0c;例如fn(3,2)返回的结果就是36。 # include<stdio.h>/* 解题思路&#xff1a;fun(a,n) a表示构成通项的数字 n表示有几个通项 先让一个 temp a,…

GitHub和Gitee的区别以及具体使用

文章目录 GitHub和GiteeGitHub和Gitee区别GitHub的使用Gitee的使用 GitHub和Gitee GitHub和Gitee区别 速度不同&#xff1a;GitHub位于美国&#xff0c;而Gitee位于中国。这意味着在中国使用Gitee可能会有更快的访问速度和更好的稳定性。如果我们希望体验Git飞一般的速度&…

Mysql如何确定执行计划是最优开销?Mysql优化器!

1. 什么是 MySQL 优化器&#xff1f; MySQL 优化器是 MySQL 中的一个核心组件。MySQL 优化器的主要职责在于确定查询的执行计划。在数据库中&#xff0c;同样的查询可以有多种不同的执行方式&#xff0c;如使用不同的索引&#xff0c;使用不同的连接顺序等。每种执行方式都有其…

抛硬币有连续x次正面的期望

首先来看期望的基本公式 其中x是抛x次&#xff0c;p是在抛第x次后出现连续正面的概率 先来看出现1次正面的期望 按照公式来算是 抛1次 1/2的概率 抛2次 1/4的概率 抛3次 1/8的概率... 我们可以写一个程序试一下 signed main() {ios_base::sync_with_stdio(0); cin.tie(0…

Python学习基础笔记七十九——Socket编程2

应用消息格式&#xff1a; 为什么要定义消息格式&#xff1f; 我们发送的消息就是要传递的内容&#xff0c;比如字符串。 我们在企业中开发的程序通讯&#xff0c;消息往往是有格式定义的。消息格式的定义可以归入OSI网络模型的表示层。 比如&#xff1a;定义的消息包括消息…

自然语言处理---Self Attention自注意力机制

Self-attention介绍 Self-attention是一种特殊的attention&#xff0c;是应用在transformer中最重要的结构之一。attention机制&#xff0c;它能够帮助找到子序列和全局的attention的关系&#xff0c;也就是找到权重值wi。Self-attention相对于attention的变化&#xff0c;其实…