电流监测芯片SGM8199A2应用电路设计

SGM8199是一系列具有电压输出功能的双向电流监测芯片,用于监测共模电压范围内分流电阻上的压降,而不受电源电压的影响。该器件具有-0.1V至26V的宽共模电压范围输入。低偏移使得在监测电流时允许分流器上的满量程最大压降为10mV。SGM8199系列提供三种固定增益:20V/V、50V/V和100V/V,采用2.7V至26V单电源供电,静态电流85μA。SGM8199系列采用绿色SC70-6封装,额定温度范围为-40℃至+125℃。

1、推荐连接

SGM8199的推荐连接如图1所示。分流电阻RSHUNT应尽可能靠近电流监测芯片的两个输入引脚IN+、IN-放置,以减少与被测分流电阻RSHUNT串联的额外电阻。在大多数应用中,电源噪声很大,会影响SGM8199的运行,为提高电流监测芯片的稳定性,对其供电引脚VCC放置旁路电容。对供电电源也需额外使用去耦电容来抑制电源噪声。

2、电源

当共模电压超过VCC引脚上的电源电压时,SGM8199可以准确测量电流。例如,VCC电源可以是5V,负载或共模电源电压允许达到26V。输出电压范围受电源电平限制。

3、RSHUNT的选择

对于差分输入的典型范围,电流监测芯片SGM8199可以精确地工作在10mV量级。SGM8199系列的不同型号决定分流电阻RSHUNT的选型。此外,还应权衡电压损耗和小输入信号精度。通过使用高值的RSHUNT可以减少偏移的影响,而通过使用低值的RSHUNT可以减少压降。对于大多数应用,RSHUNT上60mV的压降是选择RSHUNT的合适范围,相应的失调电压仅为350μV。

4、单向应用

在单向操作中,SGM8199的电流测量方向是固定的。通常,REF引脚直接连接到GND引脚,以确保输出偏置为0V。此外,如果用户希望以高精度测量低输入电压,可把REF引脚偏置至300mV进而将监测芯片设置在其线性区域。最不常见的情况是,把REF引脚直接连接到电源引脚来测量负电流,当输入电压等于0mV时,输出电压等于电源电压。

5、双向应用

双向应用表明SGM8199的电流分流监测器可以测量两个不同方向的电流。对于这种特殊情况,可以将REF引脚设置为0V至VCC之间的任意位置,以实现输出电压的偏置。为了简化,建议VREF=VCC/2为典型电压点。然而,如果正负电流的绝对值不相等,则REF引脚的电压应设置为VCC/2以外的电压。

6、输入滤波

不建议在SGM8199的输出端添加滤波器,因为这样做会增加内部缓冲器输出端的阻抗。只要考虑到输入阻抗的变化,在输入引脚处进行滤波即可。图2所示为输入滤波的应用。为减小误差并提高结果的准确性,外部电阻RS的阻值应小于10Ω。在SGM8199的内部输入结构中,有一个偏置网络导致两个输入引脚的偏置电流IB不匹配,并且外部电阻会导致RS两端的压降不匹配(因为IB不匹配),从而产生微分误差。此外,该差分误差将反映到电流监测芯片的输入引脚并影响精度。然而,偏置电流差异对监测芯片的影响很小,用户无需关心这一点。

7、关闭SGM8199

SGM8199内部没有关断控制,因此关断电源静态电流的唯一方法是使用外部逻辑门或晶体管开关。然而,用户可能会关心关断模式下通过SGM8199的电流量。图3中的原理图可用于评估关断模式下的电流消耗量。

8、REF输入的输入阻抗

共模抑制比(CMRR)会受到REF引脚输入阻抗的影响,但如果REF引脚由电源驱动,用户则无需担心。然而,如果REF引脚由电阻分压器驱动,则应由运算放大器进行缓冲,以提供低输入阻抗。

如果可以差分测量输出,比如使用差分模数转换器,用户则无需关心在REF引脚处添加的外部阻抗,并且可以消除该影响。图4是消除REF引脚处额外阻抗影响的方法示意。

9、SGM8199共模瞬态电压高于26V时的性能

SGM8199可以采用上电瞬态高于26V的电源供电,特别适合汽车行业的应用。在这种情况下,可以使用齐纳二极管或齐纳型瞬态吸收器(Transzorbs)来防止电流监测芯片在上电瞬态期间出现过压。由于时间延迟较大,不建议用户使用Transzorbs以外的瞬态吸收器。然而,任何齐纳二极管都需要额外的工作电阻来提供工作电流,因此选择10Ω电阻(任何大的外部电阻都会影响增益)。此外,10Ω电阻器和额定功率最低的齐纳二极管足以处理大多数应用中的短期瞬态。

如果低功率齐纳二极管无法保护电流监测芯片免受电源瞬态影响,则在这种情况下必须考虑高功率Transzorb。图6中,为了节省PCB板空间,还可以使用Transzorb和背靠背二极管来吸收瞬态。对于图5和图6的应用,SGM8199本身及其保护元件所占用的总面积相当于MSOP-8封装,小于SOIC-8封装。 

10、实际应用电路

实际电路中电源供电电压为12V,满载最大电流为10A。选择电流监测芯片SGM8199A2,增益倍数100V/V。

对电流监测芯片SGM8199A2单向使用,REF脚接GND,确保输出偏置为0V。VCC引脚接12V,在VCC引脚处就近放置旁路电容。IN+引脚接分流电阻的高压侧,IN-引脚接分流电阻的低压侧。OUT接CPLD或STM32的带ADC的GPIO。

定义:

分流电阻的阻值为RSHUNT

RSHUNT两端的电压为VRSHUNT

RSHUNT实际功率为PRSHUNT

流经RSHUNT的最大电流(干路最大电流)为IRSHUNT_MAX

分流电阻RSHUNT选用WW25RR003FTL型3mΩ/2512/2W贴片电阻,

满载时RSHUNT两端的电压:VRSHUNT = IRSHUNT_MAX * RSHUNT = 10A * 0.003Ω = 0.03V

满载时RSHUNT的功耗为PRSHUNT = IRSHUNT_MAX * IRSHUNT_MAX * RSHUNT = 10A*10A*0.003Ω = 0.3W,远小于RSHUNT的最大耗散功率(2W)。

满载时SGM8199A2输出的电压VOUT = Gain * VRSHUNT = 3V,满足CPLD或STM32的IO输入电平要求。

考虑到CPLD或STM32的IO输入电平是3.3V,若使用3mΩ的分流电阻,则流经分流电阻的额定电流需<11A(3.3V/100/3mΩ),否则有可能损坏IO口。

若需要监测的电流大于11A,可以考虑使用阻值更小的分流电阻(0.002Ω)或增益更低(50V/V、20V/V)的电流监测芯片。

参考文献:

1、WW25RR003FTL型贴片电阻

2、SGM8199A2型电流监测芯片

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/114990.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

关于vant 的tabbar功能

1、想要实现tabbar页面A,其他的页面B(非tabbar页面)。 从A页面进入B页面,底部的active选中效果应该被取消掉,但是还是选中A。 按照官网的说法有两个方法 一、根据path路径 二、自定义的model 但是!但是…

贪吃蛇项目实践

游戏背景: 贪吃蛇是久负盛名的游戏,它也和俄罗斯⽅块,扫雷等游戏位列经典游戏的⾏列。 实现基本的功能: 贪吃蛇地图绘制 蛇吃⻝物的功能 (上、下、左、右⽅向键控制蛇的动作) 蛇撞墙死亡 蛇撞⾃⾝死亡 计…

rust学习——栈、堆、所有权

文章目录 栈、堆、所有权栈(Stack)与堆(Heap)栈堆性能区别所有权与堆栈 所有权原则变量作用域所有权与函数返回值与作用域 栈、堆、所有权 栈(Stack)与堆(Heap) 栈和堆是编程语言最核心的数据结构,但是在很多语言中,你并不需要深入了解栈与堆。 但对于…

中间件安全-CVE复现WeblogicJenkinsGlassFish漏洞复现

目录 服务攻防-中间件安全&CVE复现&Weblogic&Jenkins&GlassFish漏洞复现中间件-Weblogic安全问题漏洞复现CVE_2017_3506漏洞复现 中间件-JBoos安全问题漏洞复现CVE-2017-12149漏洞复现CVE-2017-7504漏洞复现 中间件-Jenkins安全问题漏洞复现CVE-2017-1000353漏…

idea设置字体大小快捷键 Ctrl+鼠标上下滑 字体快捷键缩放设置

双击 按住ctrl鼠标滑轮上划放大就好了 这个双击设置为,Ctrl鼠标下滑 字体缩小就好了

手把手创建属于自己的ASP.NET Croe Web API项目

第一步:创建项目的时候选择ASP.NET Croe Web API 点击下一步,然后配置: 下一步:

Adobe Photoshop 基本操作

PS快捷键 图层 选择图层 Ctrl T:可以对图层的大小和位置进行调整 填充图层 MAC: AltBackspace (前景) or CtrlBackspace (背景) WINDOWS: AltDelete (前景) or CtrlDelete (背景) 快速将图层填充为前景色或背景色 平面化图层(盖印图层&#xff09…

性能测试LoadRunner02

本篇主要讲:通过Controller设计简单的测试场景,可以简单的分析性能测试报告。 Controller 设计场景 Controller打开方式 1)通过VUG打开 2)之间双击Controller 不演示了,双击打开,选择Manual Scenario自…

《视觉 SLAM 十四讲》V2 第 9 讲 后端优化1 【扩展卡尔曼滤波器 EKF BA+非线性优化(Ceres、g2o)】

文章目录 第9讲 后端19.1.2 线性系统和 KF9.1.4 扩展卡尔曼滤波器 EKF 不足 9.2 BA 与 图优化9.2.1 投影模型和 BA 代价函数9.2.2 BA 的求解9.2.3 稀疏性 和 边缘化9.2.4 鲁棒核函数 9.3 实践: Ceres BA 【Code】本讲 CMakeLists.txt 9.4 实践:g2o 求解 …

100 # mongoose 的使用

mongoose elegant mongodb object modeling for node.js https://mongoosejs.com/ 安装 mongoose npm i mongoose基本示例 const mongoose require("mongoose");// 1、连接 mongodb let conn mongoose.createConnection("mongodb://kaimo313:kaimo313loc…

sql高级教程-索引

文章目录 架构简介1.连接层2.服务层3.引擎层4.存储层 索引优化背景目的劣势分类基本语法索引结构和适用场景 性能分析MySq| Query Optimizerexplain 索引优化单表优化两表优化三表优化 索引失效原因 架构简介 1.连接层 最上层是一些客户端和连接服务,包含本地sock通…

1 Go的前世今生

概述 Go语言正式发布于2009年11月,由Google主导开发。它是一种针对多处理器系统应用程序的编程语言,被设计成一种系统级语言,具有非常强大和有用的特性。Go语言的程序速度可以与C、C相媲美,同时更加安全,支持并行进程。…

[架构之路-241]:目标系统 - 纵向分层 - 企业信息化与企业信息系统(多台企业应用单机组成的企业信息网络)

目录 前言: 一、什么是信息系统:计算机软件硬件系统 1.1 什么是信息 1.2 什么是信息系统 1.3 什么是信息技术 1.4 什么是信息化与信息化转型 1.5 什么是数字化与数字化转型(信息化的前提) 1.6 数字化与信息化的比较 1.7 …

Zookeeper、Kafka集群与Filebeat+Kafka+ELK架构、部署实例

Zookeeper、Kafka集群与FilebeatKafkaELK架构、部署实例 一、Zookeeper1.1、Zookeeper 定义1.2、Zookeeper 工作机制1.3、Zookeeper 特点1.4、Zookeeper 数据结构1.5、Zookeeper 应用场景1.5、Zookeeper 选举机制1.5.1、 第一次启动选举机制1.5.2、 非第一次启动选举机制 二、Z…

二、UI入门

1. QWidget类 QWidget类是Qt所有图形用户界面(组件)的基类,因此QWidget类内部规定了所有最基础的UI相关功能。例如以下成员: ● width : const int 宽度(单位:像素,后文同) Qt中的…

数据结构-树的概念结构及存储

🗡CSDN主页:d1ff1cult.🗡 🗡代码云仓库:d1ff1cult.🗡 🗡文章栏目:数据结构专栏🗡 目录 一、树的基本概念及结构 1树的概念 2树的存储 二、二叉树的概念及结构 1二叉树的概…

互联网Java工程师面试题·Java 面试篇·第五弹

目录 79、适配器模式和装饰器模式有什么区别? 80、适配器模式和代理模式之前有什么不同? 81、什么是模板方法模式? 82、什么时候使用访问者模式? 83、什么时候使用组合模式? 84、继承和组合之间有什么不同&#…

改进YOLO系列 | YOLOv5/v7 引入 Dynamic Snake Convolution | 动态蛇形卷积

准确分割拓扑管状结构,如血管和道路,在各个领域中至关重要,可以确保下游任务的准确性和效率。然而,许多因素使任务复杂化,包括细小的局部结构和可变的全局形态。在这项工作中,我们注意到管状结构的特殊性,并利用这一知识来引导我们的DSCNet,以在三个阶段同时增强感知:…

【CSS】常见 CSS 布局

1. 响应式布局 <!DOCTYPE html> <html><head><title>简单的响应式布局</title><style>/* 全局样式 */body {font-family: Arial, sans-serif;margin: 0;padding: 0;}/* 头部样式 */header {background-color: #333;color: #fff;padding: …

论文导读|9月MSOM文章精选:智慧城市运筹

推文作者&#xff1a;郭浩然 编者按 本期论文导读围绕“智慧城市运筹”这一话题&#xff0c;简要介绍并分析了近期的三篇MSOM文章&#xff0c;分别涉及了最后一公里配送中的新模式&#xff1a;“司机辅助”&#xff0c;易腐库存管理的新策略&#xff1a;“截断平衡”&#xff0…