相似度loss汇总,pytorch code

用于约束图像生成,作为loss。

可梯度优化

  • pytorch structural similarity (SSIM) loss https://github.com/Po-Hsun-Su/pytorch-ssim
  • https://github.com/harveyslash/Facial-Similarity-with-Siamese-Networks-in-Pytorch/blob/master/Siamese-networks-medium.ipynb
class ContrastiveLoss(torch.nn.Module):"""Contrastive loss function.Based on: http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf"""def __init__(self, margin=2.0):super(ContrastiveLoss, self).__init__()self.margin = margindef forward(self, output1, output2, label):euclidean_distance = F.pairwise_distance(output1, output2, keepdim = True)loss_contrastive = torch.mean((1-label) * torch.pow(euclidean_distance, 2) +(label) * torch.pow(torch.clamp(self.margin - euclidean_distance, min=0.0), 2))return loss_contrastive
  • 多个集合,参看写法 Multi-Similarity Loss for Deep Metric Learning (MS-Loss)
  • 参考 https://blog.csdn.net/m0_46204224/article/details/117997854
@LOSS.register('ms_loss')
class MultiSimilarityLoss(nn.Module):def __init__(self, cfg):super(MultiSimilarityLoss, self).__init__()self.thresh = 0.5self.margin = 0.1self.scale_pos = cfg.LOSSES.MULTI_SIMILARITY_LOSS.SCALE_POSself.scale_neg = cfg.LOSSES.MULTI_SIMILARITY_LOSS.SCALE_NEGdef forward(self, feats, labels):assert feats.size(0) == labels.size(0), \f"feats.size(0): {feats.size(0)} is not equal to labels.size(0): {labels.size(0)}"batch_size = feats.size(0)sim_mat = torch.matmul(feats, torch.t(feats))epsilon = 1e-5loss = list()for i in range(batch_size):pos_pair_ = sim_mat[i][labels == labels[i]]pos_pair_ = pos_pair_[pos_pair_ < 1 - epsilon]neg_pair_ = sim_mat[i][labels != labels[i]]neg_pair = neg_pair_[neg_pair_ + self.margin > min(pos_pair_)]pos_pair = pos_pair_[pos_pair_ - self.margin < max(neg_pair_)]if len(neg_pair) < 1 or len(pos_pair) < 1:continue# weighting steppos_loss = 1.0 / self.scale_pos * torch.log(1 + torch.sum(torch.exp(-self.scale_pos * (pos_pair - self.thresh))))neg_loss = 1.0 / self.scale_neg * torch.log(1 + torch.sum(torch.exp(self.scale_neg * (neg_pair - self.thresh))))loss.append(pos_loss + neg_loss)if len(loss) == 0:return torch.zeros([], requires_grad=True)loss = sum(loss) / batch_sizereturn loss
  • Recall@k Surrogate Loss with Large Batches and Similarity Mixup https://github.com/yash0307/RecallatK_surrogate
class RecallatK(torch.nn.Module):def __init__(self, anneal, batch_size, num_id, feat_dims, k_vals, k_temperatures, mixup):super(RecallatK, self).__init__()assert(batch_size%num_id==0)self.anneal = annealself.batch_size = batch_sizeself.num_id = num_idself.feat_dims = feat_dimsself.k_vals = [min(batch_size, k) for k in k_vals]self.k_temperatures = k_temperaturesself.mixup = mixupself.samples_per_class = int(batch_size/num_id)def forward(self, preds, q_id):batch_size = preds.shape[0]num_id = self.num_idanneal = self.annealfeat_dims = self.feat_dimsk_vals = self.k_valsk_temperatures = self.k_temperaturessamples_per_class = int(batch_size/num_id)norm_vals = torch.Tensor([min(k, (samples_per_class-1)) for k in k_vals]).cuda()group_num = int(q_id/samples_per_class)q_id_ = group_num*samples_per_classsim_all = (preds[q_id]*preds).sum(1)sim_all_g = sim_all.view(num_id, int(batch_size/num_id))sim_diff_all = sim_all.unsqueeze(-1) - sim_all_g[group_num, :].unsqueeze(0).repeat(batch_size,1)sim_sg = sigmoid(sim_diff_all, temp=anneal)for i in range(samples_per_class): sim_sg[group_num*samples_per_class+i,i] = 0.sim_all_rk = (1.0 + torch.sum(sim_sg, dim=0)).unsqueeze(dim=0)sim_all_rk[:, q_id%samples_per_class] = 0.sim_all_rk = sim_all_rk.unsqueeze(dim=-1).repeat(1,1,len(k_vals))k_vals = torch.Tensor(k_vals).cuda()k_vals = k_vals.unsqueeze(dim=0).unsqueeze(dim=0).repeat(1, samples_per_class, 1)sim_all_rk = k_vals - sim_all_rkfor given_k in range(0, len(self.k_vals)):sim_all_rk[:,:,given_k] = sigmoid(sim_all_rk[:,:,given_k], temp=float(k_temperatures[given_k]))sim_all_rk[:,q_id%samples_per_class,:] = 0.k_vals_loss = torch.Tensor(self.k_vals).cuda()k_vals_loss = k_vals_loss.unsqueeze(dim=0)recall = torch.sum(sim_all_rk, dim=1)recall = torch.minimum(recall, k_vals_loss)recall = torch.sum(recall, dim=0)recall = torch.div(recall, norm_vals)recall = torch.sum(recall)/len(self.k_vals)return (1.-recall)/batch_size
  • Circle Loss https://github.com/TinyZeaMays/CircleLoss/blob/master/circle_loss.py

  • Torch的官方 https://pytorch.org/docs/1.12/nn.functional.html#loss-functions

  • KL散度

  • Hard Triplet loss

from __future__ import absolute_import
import sysimport torch
from torch import nn
DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")class TripletLoss(nn.Module):"""Triplet loss with hard positive/negative mining.Reference:Hermans et al. In Defense of the Triplet Loss for Person Re-Identification. arXiv:1703.07737.Code imported from https://github.com/Cysu/open-reid/blob/master/reid/loss/triplet.py.Args:margin (float): margin for triplet."""def __init__(self, margin=0.3):#三元组的阈值marginsuper(TripletLoss, self).__init__()self.margin = marginself.ranking_loss = nn.MarginRankingLoss(margin=margin)#三元组损失函数#ap an margin y:倍率   Relu(ap - anxy + margin)这个relu就起到和0比较的作用def forward(self, inputs, targets):"""Args:inputs: visualization_feature_map matrix with shape (batch_size, feat_dim)#32x2048targets: ground truth labels with shape (num_classes)#tensor([32])[1,1,1,1,2,3,2,,,,2]32个数,一个数代表ID的真实标签"""n = inputs.size(0)#取出输入的batch# Compute pairwise distance, replace by the official when merged#计算距离矩阵,其实就是计算两个2048维之间的距离平方(a-b)**2=a^2+b^2-2ab#[1,2,3]*[1,2,3]=[1,4,9].sum()=14  点乘dist = torch.pow(inputs, 2).sum(dim=1, keepdim=True).expand(n, n)dist = dist + dist.t()dist.addmm_(1, -2, inputs, inputs.t())#生成距离矩阵32x32,.t()表示转置dist = dist.clamp(min=1e-12).sqrt()  # for numerical stability#clamp(min=1e-12)加这个防止矩阵中有0,对梯度下降不好# For each anchor, find the hardest positive and negativemask = targets.expand(n, n).eq(targets.expand(n, n).t())#利用target标签的expand,并eq,获得mask的范围,由01组成,,红色1表示是同一个人,绿色0表示不是同一个人dist_ap, dist_an = [], []#用来存放ap,anfor i in range(n):#i表示行# dist[i][mask[i]],,i=0时,取mask的第一行,取距离矩阵的第一行,然后得到tensor([1.0000e-06, 1.0000e-06, 1.0000e-06, 1.0000e-06])dist_ap.append(dist[i][mask[i]].max().unsqueeze(0))#取某一行中,红色区域的最大值,mask前4个是1,与dist相乘dist_an.append(dist[i][mask[i] == 0].min().unsqueeze(0))#取某一行,绿色区域的最小值,加一个.unsqueeze(0)将其变成带有维度的tensordist_ap = torch.cat(dist_ap)dist_an = torch.cat(dist_an)# Compute ranking hinge lossy = torch.ones_like(dist_an)#y是个权重,长度像dist-anloss = self.ranking_loss(dist_an, dist_ap, y) #ID损失:交叉商输入的是32xf f.shape=分类数,然后loss用于计算损失#度量三元组:输入的是dist_an(从距离矩阵中,挑出一行(即一个ID)的最大距离),dist_ap#ranking_loss输入 an ap margin y:倍率  loss: Relu(ap - anxy + margin)这个relu就起到和0比较的作用# from IPython import embed# embed()return lossclass MultiSimilarityLoss(nn.Module):def __init__(self, margin=0.7):super(MultiSimilarityLoss, self).__init__()self.thresh = 0.5self.margin = marginself.scale_pos = 2.0self.scale_neg = 40.0def forward(self, feats, labels):assert feats.size(0) == labels.size(0), \f"feats.size(0): {feats.size(0)} is not equal to labels.size(0): {labels.size(0)}"batch_size = feats.size(0)feats = nn.functional.normalize(feats, p=2, dim=1)# Shape: batchsize * batch sizesim_mat = torch.matmul(feats, torch.t(feats))epsilon = 1e-5loss = list()mask = labels.expand(batch_size, batch_size).eq(labels.expand(batch_size, batch_size).t())for i in range(batch_size):pos_pair_ = sim_mat[i][mask[i]]pos_pair_ = pos_pair_[pos_pair_ < 1 - epsilon]neg_pair_ = sim_mat[i][mask[i] == 0]neg_pair = neg_pair_[neg_pair_ + self.margin > min(pos_pair_)]pos_pair = pos_pair_[pos_pair_ - self.margin < max(neg_pair_)]if len(neg_pair) < 1 or len(pos_pair) < 1:continue# weighting steppos_loss = 1.0 / self.scale_pos * torch.log(1 + torch.sum(torch.exp(-self.scale_pos * (pos_pair - self.thresh))))neg_loss = 1.0 / self.scale_neg * torch.log(1 + torch.sum(torch.exp(self.scale_neg * (neg_pair - self.thresh))))loss.append(pos_loss + neg_loss)# pos_loss =if len(loss) == 0:return torch.zeros([], requires_grad=True, device=feats.device)loss = sum(loss) / batch_sizereturn lossif __name__ == '__main__':#测试TripletLoss(nn.Module)use_gpu = Falsemodel = TripletLoss()features = torch.rand(32, 2048)label= torch.Tensor([1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5, 5, 5,  5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8,8]).long()loss = model(features, label)print(loss)

不可梯度优化

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/114721.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

为什么嵌入通常优于TF-IDF:探索NLP的力量

塔曼纳 一、说明 自然语言处理&#xff08;NLP&#xff09;是计算机科学的一个领域&#xff0c;涉及人类语言的处理和分析。它用于各种应用程序&#xff0c;例如聊天机器人、情绪分析、语音识别等。NLP 中的重要任务之一是文本分类&#xff0c;我们根据文本的内容将文本分类为不…

UE4逆向篇-2_各类数据的查找方式

写在前面 1.通过前面的文章&#xff0c;相信各位已经能够自己找到GNames并使用DUMP工具导出GNames了。 2.本篇文章将介绍各种所需数据的查找方法。 一、准备工作 1.CheatEngine&#xff0c;本篇以及后续篇幅的重要工具。 2.一个记事本&#xff0c;保证你能记录下关键信息。…

ubuntu启动模式介绍以及如何进入单用户模式和恢复模式

Ubuntu操作系统提供了多种启动模式&#xff0c;每种模式都有不同的用途和功能。下面将深入介绍Ubuntu的几种启动模式&#xff1a; 正常启动模式&#xff08;Normal boot&#xff09;&#xff1a;这是默认的启动模式&#xff0c;也是大多数用户使用的模式。在正常启动模式下&am…

在Mac上使用安卓桌面模式

在安装Homeblew的基础上 替换国内源 export HOMEBREW_API_DOMAIN"https://mirrors.tuna.tsinghua.edu.cn/homebrew-bottles/api" export HOMEBREW_BREW_GIT_REMOTE"https://mirrors.tuna.tsinghua.edu.cn/git/homebrew/brew.git" brew update 安装Scrcpy …

屏幕录像推荐:Apeaksoft Screen Recorder 中文 for mac

Apeaksoft Screen Recorder 是一款功能强大的屏幕录制软件&#xff0c;它允许用户在 Windows 和 Mac 系统上捕捉和录制屏幕活动。无论是记录游戏过程、创建教学视频、制作演示文稿还是捕捉在线流媒体内容&#xff0c;该软件都提供了丰富的功能和工具。 以下是 Apeaksoft Scree…

计算机视觉(CV)技术

是一种将数字图像或视频进行处理和分析的技术&#xff0c;旨在使计算机能够模拟人类视觉系统。该领域涉及到图像处理、模式识别、机器学习等多个领域&#xff0c;主要涵盖以下几方面&#xff1a; 图像处理&#xff1a;对图像进行去噪、增强、分割、特征提取等处理。图像分类&a…

vite+vue3+elementPlus+less+router+pinia+axios

1.创建项目2.按需引入elementplus3.引入less安装vue-router安装 axios安装 piniapinia的持久化配置(用于把数据放在localStorage中)---另外增加的配置 1.创建项目 npm init vitelatest2.按需引入elementplus npm install element-plus --save//按需引入 npm install -D unpl…

HTTP框架 - HttpMaster 核心基类上传

场景 在电子商务应用中&#xff0c;可能需要与多个供应商和物流服务提供商进行通信。这些服务提供商可能具有不同的 API 和身份验证要求。通过封装 HTTP 工具&#xff0c;可以统一管理与这些服务提供商的通信&#xff0c;处理价格查询、订单跟踪、库存查询等任务。如果供应商或…

【MATLAB源码-第52期】基于matlab的4用户DS-CDMA误码率仿真,对比不同信道以及不同扩频码。

操作环境&#xff1a; MATLAB 2022a 1、算法描述 1. DS-CDMA系统 DS-CDMA (Direct Sequence Code Division Multiple Access) 是一种多址接入技术&#xff0c;其基本思想是使用伪随机码序列来调制发送信号。DS-CDMA的特点是所有用户在同一频率上同时发送和接收信息&#xf…

《动手学深度学习 Pytorch版》 9.4 双向循环神经网络

之前的序列学习中假设的目标是在给定观测的情况下对下一个输出进行建模&#xff0c;然而也存在需要后文预测前文的情况。 9.4.1 隐马尔可夫模型中的动态规划 数学推导太复杂了&#xff0c;略。 9.4.2 双向模型 双向循环神经网络&#xff08;bidirectional RNNs&#xff09;…

Ubuntu 17.10的超震撼声音权限

从GNOME GUADEC 2017开发者大会归来之后&#xff0c;Canonical的Didier Roche就开始了一个日更博客系列&#xff0c;主要讲述即将带来的Ubuntu 17.10&#xff08;Artful Aardvark&#xff09;发行版将如何从Unity到GNOME Shell的转变。有趣的是&#xff0c;Ubuntu Unity桌面环境…

gin框架39--重构 BasicAuth 中间件

gin框架39--重构 BasicAuth 中间件 介绍gin BasicAuth 解析自定义newAuth实现基础认证注意事项说明 介绍 每当我们打开一个网址的时候&#xff0c;会自动弹出一个认证界面&#xff0c;要求我们输入用户名和密码&#xff0c;这种BasicAuth是最基础、最常见的认证方式&#xff0…

SIEMENS S7-1200 汽车转弯灯程序 编程与分析

公告 项目地址:https://github.com/MartinxMax/SIEMENS-1200-car_turn_signal 分析 题目: 画IO分配表 输入输出m3.0左转弯开关q0.0左闪灯m3.1右转弯开关q0.1右闪灯m3.2停止开关 博图V16配置 设置PLC的IP地址 允许远程通信访问 将HMI设备拖入 注意,我们这边选择的是HMI连接…

数据结构----算法--五大基本算法(这里没有写分支限界法)和银行家算法

数据结构----算法–五大基本算法&#xff08;这里没有写分支限界法&#xff09;和银行家算法 一.贪心算法 1.什么是贪心算法 在有多个选择的时候不考虑长远的情况&#xff0c;只考虑眼前的这一步&#xff0c;在眼前这一步选择当前的最好的方案 二.分治法 1.分治的概念 分…

某讯D-Link AC集中管理平台未授权访问漏洞复现 CNVD-2023-19479

目录 1.漏洞概述 2.影响版本 3.漏洞等级 4.漏洞复现 5.Nuclei自动化验证POC 6.修复建议

【JavaEE】Callable 接口

Callable 是一个 interface . 相当于把线程封装了一个 “返回值”. 方便程序猿借助多线程的方式计算结果. 实现Callable也是创建线程的一种方法&#xff01;&#xff01;&#xff01;&#xff01; Callable的用法非常接近于Runnable&#xff0c;Runnable描述了一个任务&#…

Mysql创建视图中文乱码修改docker里的配置

问题现象&#xff1a; 创建的视图查询无数据&#xff0c;查看创建语句得知&#xff0c;where条件里的中文变成了“???”。 在客户端里查询字符编码&#xff1a; show VARIABLES like %char%;就是character_set_server导致的&#xff0c;它配置的竟然不是utf8&#xff0c;…

通过SVN拉取项目 步骤

方法一&#xff1a;文件夹方式 首先新建一个空的文件夹&#xff0c;例如&#xff0c;名为“demo”的空文件夹 在这个空的文件夹中鼠标右键&#xff0c;点击SVN Checkout 会出现下图所示的页面&#xff0c;第一个输入框是svn的项目地址&#xff0c;第二个输入框是拉取项目所放的…

OpenGL —— 2.6、绘制一个正方体并贴图(附源码,glfw+glad)

源码效果 C源码 纹理图片 需下载stb_image.h这个解码图片的库&#xff0c;该库只有一个头文件。 具体代码&#xff1a; vertexShader.glsl #version 330 corelayout(location 0) in vec3 aPos; layout(location 1) in vec2 aUV;out vec2 outUV;uniform mat4 _viewMatrix; u…