数据结构----算法--五大基本算法(这里没有写分支限界法)和银行家算法

数据结构----算法–五大基本算法(这里没有写分支限界法)和银行家算法

一.贪心算法

1.什么是贪心算法

在有多个选择的时候不考虑长远的情况,只考虑眼前的这一步,在眼前这一步选择当前的最好的方案

二.分治法

1.分治的概念

分治法:分而治之

将一个问题拆解成若干个解决方式完全相同的问题

满足分治的四个条件

1.问题难度随着数据规模缩小而降低

2.问题可拆分

3.子问题间相互独立

4.子问题的解可合并

2.典型的分治:二分查找(折半搜索) BinaryChop

前提:有序
时间复杂度O(log2的n次方)
1.循环实现二分查找
//循环
int BinaryChop1(int a[], int begin, int end ,int find) {if (a == nullptr || begin > end) return -1;while (begin<= end) {int mid = begin+(end- begin)/2 ;if (a[mid] == find) {cout << "找到了,返回在数组中的下标" << endl;return mid;}else if (a[mid] < find) {begin = mid + 1;}else if (a[mid] > find) {end = mid - 1;}}return -1;
}
2.递归实现二分查找
//递归
int BinaryChop2(int a[], int begin, int end, int find) {if (a == nullptr || begin > end) return -1;int mid = begin+(end- begin)/2;if (a[mid] == find) {cout << "找到了,返回数组下标" << endl;return mid;}else if (a[mid] < find) {begin = mid + 1;}else if (a[mid] > find) {end = mid - 1;}return BinaryChop2(a, begin, end, find);}

三.回溯法

1.回溯法解决的问题

1.求子集的问题

2.求排列的问题

3.求集合的问题

4.求棋盘的问题

2.回溯常见的写法

循环嵌套递归

3.用回溯法解决一道全排列的问题(此题的网址为https://leetcode.cn/problems/permutations/)

此题在之前的博客中具体分析过(博客的网址如下https://blog.csdn.net/m0_73483024/article/details/133589061?spm=1001.2014.3001.5502)

题目:

四.动态规划(Dynamic Programming)

1.动态规划可以解决的问题

动态规划可以用来求最优解(最大、最小、最多等)的问题

2.动态规划操作对象所要满足的性质

大问题可以拆解成解决方案完全相同的子问题,并且要满足以下两个性质

1.满足最优子结构性质(子问题的最优解构成当前问题的最优解)

2.无后效性(一旦某一状态被确定,那么过去这个状态如何求得的我们就再也不关注了)

3.动态规划的求解过程

1.拆分

2.定状态(子问题的最优解)

3.做决策

4.求状态转移方程

4.动态规划的实现手段

1.自顶向下带备忘的解法(大到小)

2.自底向上的解法(小到大)

注意:动态规划的空间消耗是用来换时间了

5.关于动态规划的问题

1.凑钱问题
题目:

有1元,3元,5元面额的钞票,想要凑到n元钱

解决方法:

创建一个f数组

f(n)表示想要凑到n元钱所需要的最小的钞票数

我们观察下面式子,找出规律

f(0)=0

f(1)=f(1-1)+1=1

f(2)=f(2-1)+1=2

f(3)=min{f(3-3)+1=1,f(3-1)+1=3}=1

f(4)=min{f(4-3)+1=2,f(4-1)+1=2}=2

f(5)=min{f(5-5)+1=1,f(5-3)+1=3,f(5-1)+1=3}=1

推导出动态转移方程得

f(i)=min{f(i-v[j])}+1(v[j]<=i)

这里v是一个存1元,3元,5元面额的钞票的数组,j是遍历v数组的变量

2.一维的动态划分问题:最长递增子序列(LIS)
题目:

有一个数组中有6、3、9、8、4、7、2、5、10、1这些元素,找到这个数组中的最长递增子序列

解决方法:
方法一

创建一个f数组

f(n)表示n下标与前序元素构成的LIS的长度

我们观察下面式子,找出规律

f(0)=1

f(1)=1

f(2)=max{9>3 f(1)+1=2

​ 9>6 f(0)+1=2

​ 1(只有自己本身,长度为1)

​ }=2

f(3)=max{8>3 f(1)+1=2

​ 8>6 f(0)+1=2

​ 1(只有自己本身,长度为1)

​ }=2

f(4)=max{4>3 f(1)+1=2

​ 1(只有自己本身,长度为1)

​ }=2

f(5)=max{7>4 f(4)+1=3

​ 7>3 f(1)+1=2

​ 7>6 f(0)+1=2

​ 1(只有自己本身,长度为1)

​ }=3

推导出动态转移方程得

f(i)=max(f(j)+1,1) (v[j]<v[i],0<=j<i)

这里v是数组,i和j是遍历v数组的变量

方法二(相较于方法一优化)

创建一个数组用来存等长LIS右边界的最小值(下标当作长度)

从左到右遍历数组,对创建的数组进行更新,最后数组的使用量就是最长递增子序列的长度

看下面进行理解

f(0)=1

在这里插入图片描述

f(1)=1

在这里插入图片描述

f(2)=2

在这里插入图片描述

f(3)=2

在这里插入图片描述

f(4)=2

在这里插入图片描述

f(5)=3

在这里插入图片描述

下面的过程就不再写了

方法三(在方法二的基础上,进行二分搜索,在进行数组的更新时使用二分搜索)
3.二维的动态规划问题:捡苹果
题目:

有一个m*n的格子,每个格子中有数量不一的苹果,一个小机器人(只能往右或者往下走)从左上角走到它不能再走了,求它最多能捡到多少个苹果

解决:

状态转移方程为 c[i] [j]=max{c[i-1] [j],c[i] [j-1]}+A[i] [j]

c数组存的是到每个位置所能捡到的最大苹果数量,A数组存的是每个位置的苹果数量

4.二维的动态规划问题且带附加条件的:最长公共子序列(LCS)
题目:

求X数组{A,B,B,D,C,B,C}与Y数组{B,C,D,B,A,C}的最长公共子序列

解决:

状态转移方程为 c[i] [j]={c[i-1] [j-1]+1 xi==yi

​ max{c[i-1] [j],c[i] [j-1]}} xi!=yi

​ }

c数组存的是x数组走到数组中的某个元素和y数组走到数组中的某个元素时,二者所构成的LCS的长度

c[i] [j]存的是x数组走到第i个元素,y数组走到第j个元素,二者所构成的LCS的长度

四.博弈树

1.博弈树(Game Tree)

棋类中用到的博弈树满足的条件

1.二者零和

2.全信息

3.非偶然

注意:博弈树要在时间消耗和结果准确度中做一个平衡

2.极大极小搜索树(是在原有博弈树的基础上实现的)

看下面这张图理解博弈树

甲是自己要选择尽量大的

乙是对手要使我们最小,所以乙选择尽量小的

在这里插入图片描述

3.α-β剪枝(对极大极小树的优化)

看下面图片(都是部分图,不是完整的)理解α-β剪枝

图片一

注意:这是一个深搜过程(图中数字表示处理的步骤)

在这里插入图片描述

当此图第4步得到的值小于第3步得到的值,那么第5步就不用处理了

图片二

在这里插入图片描述

注意:这是一个深搜过程(图中数字表示处理的步骤)

当此图第9步得到的值大于第7步得到的值,那么第11步和第12步就不用处理了

五.银行家算法

1.使用银行家算法要满足的条件

1.固定数量的进程共享固定数量的资源

2.进程最大请求资源数

3.单次申请的资源数不能超出可分配资源数

4.不是一次性全部申请,分批次进行

5.进程等待资源的时间是有限的(不会无休止等待)

6.当满足进程的最大资源需求,进程应该在有限时间内归还资源

2.银行家算法的操作步骤

A:总资产

B:所需的最大资源数

C:已经分配的资源数

D:仍然需要的资源数

E:每次请求的资源数

F:可分配的资源数

1.看E<=F是否满足

​ 如果不满足就等待

​ 如果满足就进行下一步

2.看E<=D是否满足

​ 如果不满足,失败

​ 如果满足就进行下一步

3.假装分配,更新各个值

​ C=C+E

​ D=D-E

​ F=F-E

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/114706.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【JavaEE】Callable 接口

Callable 是一个 interface . 相当于把线程封装了一个 “返回值”. 方便程序猿借助多线程的方式计算结果. 实现Callable也是创建线程的一种方法&#xff01;&#xff01;&#xff01;&#xff01; Callable的用法非常接近于Runnable&#xff0c;Runnable描述了一个任务&#…

Mysql创建视图中文乱码修改docker里的配置

问题现象&#xff1a; 创建的视图查询无数据&#xff0c;查看创建语句得知&#xff0c;where条件里的中文变成了“???”。 在客户端里查询字符编码&#xff1a; show VARIABLES like %char%;就是character_set_server导致的&#xff0c;它配置的竟然不是utf8&#xff0c;…

通过SVN拉取项目 步骤

方法一&#xff1a;文件夹方式 首先新建一个空的文件夹&#xff0c;例如&#xff0c;名为“demo”的空文件夹 在这个空的文件夹中鼠标右键&#xff0c;点击SVN Checkout 会出现下图所示的页面&#xff0c;第一个输入框是svn的项目地址&#xff0c;第二个输入框是拉取项目所放的…

OpenGL —— 2.6、绘制一个正方体并贴图(附源码,glfw+glad)

源码效果 C源码 纹理图片 需下载stb_image.h这个解码图片的库&#xff0c;该库只有一个头文件。 具体代码&#xff1a; vertexShader.glsl #version 330 corelayout(location 0) in vec3 aPos; layout(location 1) in vec2 aUV;out vec2 outUV;uniform mat4 _viewMatrix; u…

docker 安装 sftpgo

sftpgo 简介 sftpgo 是一个功能齐全且高度可配置的 SFTP 服务器&#xff0c;具有可选的 HTTP/S、FTP/S 和 WebDAV 支持。支持多种存储后端&#xff1a;本地文件系统、加密本地文件系统、S3&#xff08;兼容&#xff09;对象存储、Google 云存储、Azure Blob 存储、SFTP。 官…

关于Git的入门教程(附GitHub和Gitee的使用方法)

一. Git 概述 Git是一个免费的、开源的分布式版本控制系统&#xff0c;可以快速高效地处理从小型到大型的各种项目。Git易于学习、占地面积小、性能极快。它具有廉价的本地库&#xff0c;方便的暂存区域和多个工作流分支等特性。其性能优于Subversion、CVS、Perforce和ClearCas…

SpringMVC之全局异常拦截器

在SpringMVC自动装配核心类之WebMvcAutoConfiguration内部实例化EnableWebMvcConfiguration过程中会触发其父类WebMvcConfigurationSupport内部初始化HandlerExceptionResolver。 1.WebMvcConfigurationSupport public class WebMvcConfigurationSupport implements Applicat…

2434: 【区赛】[慈溪2013]统计方格

题目描述 给出一张 n 行 m 列仅由黑白方格组成的黑白图片&#xff08;行从上到下 1 到 n 编号&#xff0c;列从左到右 1 到 m 编号&#xff09;。如下图是一张由 17 行 18 列方格构成的黑白图片&#xff0c;图片中的任意一个方格要么是白色&#xff0c;要么是黑色。 仔细观察这…

Python —— UI自动化之Page Object模式

1、Page Object模式简介 1、二层模型 Page Object Model&#xff08;页面对象模型&#xff09;, 或者也可称之为POM。在UI自动化测试广泛使用的一种分层设计 模式。核心是通过页面层封装所有的页面元素及操作&#xff0c;测试用例层通过调用页面层操作组装业务逻辑。 1、实战 …

springBoot--web--函数式web

函数式web 前言场景给容器中放一个Bean&#xff1a;类型是 RouterFunction<ServerResponse>每个业务准备一个自己的handler使用集合的时候加注解请求的效果 前言 springmvc5.2 以后允许我们使用函数式的方式&#xff0c;定义web的请求处理流程 函数式接口 web请求处理的…

【Dockerfile镜像实战】构建LNMP环境并运行Wordpress网站平台

这里写目录标题 一、项目背景和要求二、项目环境三、部署过程1&#xff09;创建自定义网络2&#xff09;部署NginxStep1 创建工作目录并上传相关软件包Step2 编写Dockerfile文件Step3 编写配置文件nginx.confStep4 创建nginx镜像Step5 运行容器 3&#xff09;部署MysqlStep1 创…

Spring Cloud Alibaba Seata 实现分布式事物

Seata 是一款开源的分布式事务解决方案&#xff0c;致力于提供高性能和简单易用的分布式事务服务。Seata 将为用户提供了 AT、TCC、SAGA 和 XA 事务模式&#xff0c;为用户打造一站式的分布式解决方案 Seata 官网&#xff1a;https://seata.io/zh-cn/ Spring Cloud Alibaba 官…

Leetcode—2652.倍数求和【简单】

2023每日刷题&#xff08;四&#xff09; Leetcode—2652.倍数求和 实现代码 int sumOfMultiples(int n){int ans 0;int i 1;for(; i < n; i) {if((i % 3 0) || (i % 5 0) || (i % 7 0)) {ans i;}}return ans; }测试结果 之后我会持续更新&#xff0c;如果喜欢我的文…

STM32,我想看单片机上的外设时钟,我怎么看?

一&#xff1a;在工程中加入rcc文件 首先需要加载我们的时钟函数的文件 stm32f10x_rcc.h 和 stm32f10x_rcc.c 文件 二&#xff1a;查看文件 在h头文件 尾部&#xff0c;有我们这个总线的函数 在函数体内&#xff0c;有我们这个宏定义的 外设时钟&#xff0c;我们拿就行了 APB2_…

MapReduce编程:join操作和聚合操作

文章目录 MapReduce 编程&#xff1a;join操作和聚合操作一、实验目标二、实验要求及注意事项三、实验内容及步骤 附&#xff1a;系列文章 MapReduce 编程&#xff1a;join操作和聚合操作 一、实验目标 理解MapReduce计算框架的分布式处理工作流程掌握用mapreduce计算框架实现…

Git Bash(一)Windows下安装及使用

目录 一、简介1.1 什么是Git&#xff1f;1.2 Git 的主要特点1.3 什么是 Git Bash&#xff1f; 二、下载三、安装3.1 同意协议3.2 选择安装位置3.3 其他配置&#xff08;【Next】 即可&#xff09;3.4 安装完毕3.5 打开 Git Bash 官网地址&#xff1a; https://www.git-scm.com/…

codeforces (C++ Morning)

题目&#xff1a; 翻译&#xff1a; 思路&#xff1a; 1、要将四位数显示&#xff0c;每次操作可以选择移动光标&#xff08;移动到相邻的位置&#xff09;或者显示数字&#xff0c;计算最少需要多少次操作。 2、用flag表示当前光标位置&#xff0c;sum为记录操作次数&#…

开源软件-禅道Zentao

禅道Zentao 简介漏洞复现SQL注入漏洞**16.5****router.class.php SQL注入** **v18.0-v18.3****后台命令执行** 远程命令执行漏洞&#xff08;RCE&#xff09;后台命令执行 简介 是一款开源的项目管理软件&#xff0c;旨在帮助团队组织和管理他们的项目。Zentao提供了丰富的功能…

基于FPGA的图像拉普拉斯变换实现,包括tb测试文件和MATLAB辅助验证

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022a vivado2019.2 3.部分核心程序 timescale 1ns / 1ps // // Company: // Engineer: // // Create Date: 202…

【Java基础面试四十一】、说一说你对static关键字的理解

文章底部有个人公众号&#xff1a;热爱技术的小郑。主要分享开发知识、学习资料、毕业设计指导等。有兴趣的可以关注一下。为何分享&#xff1f; 踩过的坑没必要让别人在再踩&#xff0c;自己复盘也能加深记忆。利己利人、所谓双赢。 面试官&#xff1a;说一说你对static关键字…