为什么嵌入通常优于TF-IDF:探索NLP的力量


塔曼纳

一、说明

        自然语言处理(NLP)是计算机科学的一个领域,涉及人类语言的处理和分析。它用于各种应用程序,例如聊天机器人、情绪分析、语音识别等。NLP 中的重要任务之一是文本分类,我们根据文本的内容将文本分类为不同的类别。

        过去,流行的文本分类方法之一是 TF-IDF 方法。然而,随着深度学习的出现,另一种称为词嵌入的方法变得越来越流行。在本文中,我们将讨论为什么嵌入通常比TF-IDF更适合文本分类。

二、什么是TF-IDF?

        TF-IDF 代表 术语频率 — 反向文档频率。它是一种统计方法,用于评估文档中单词的重要性。TF-IDF 方法计算文档中每个单词的分数,这反映了其在文档中的重要性。

        文档中某个单词的 TF-IDF 分数使用以下公式计算:

TF-IDF = TF * IDF

        其中 TF 是文档中单词的术语频率,IDF 是单词的反向文档频率。术语频率是单词在文档中出现的次数,而反向文档频率是衡量该单词在整个文档语料库中的常见或罕见程度的指标。

        TF-IDF 是一种词袋方法,这意味着它不考虑文档中单词的顺序。它只考虑文档和语料库中单词的频率。

三、什么是嵌入?

        词嵌入是向量空间中单词的一种表示形式。词嵌入将词表示为高维空间中的向量,其中具有相似含义的词聚集在一起。这些向量捕获单词的语义含义,这使得它们可用于各种 NLP 任务,例如文本分类、情感分析等。

        词嵌入是使用神经网络训练的,特别是word2vec或GloVe架构。word2vec 架构是一种神经网络模型,它学习根据周围的单词预测单词的上下文。另一方面,GloVe 架构通过分解语料库中单词的共现矩阵来学习单词嵌入。

四、为什么嵌入(通常)比TF-IDF更好?

在文本分类方面,嵌入通常比 TF-IDF 更好有几个原因。

  1. 嵌入捕获单词的语义含义

与仅考虑文档中单词频率的 TF-IDF 不同,嵌入捕获单词的语义含义。这意味着具有相似含义的单词在嵌入空间中更紧密地结合在一起,使模型更容易根据其内容对文档进行分类。

例如,在嵌入空间中,单词“汽车”和“车辆”将紧密地联系在一起,因为它们具有相似的含义。在TF-IDF方法中,这些词语将被视为单独的实体,而不考虑其含义。

2. 嵌入捕捉单词的上下文

嵌入还捕获单词的上下文。这意味着在类似上下文中使用的单词在嵌入空间中更紧密地结合在一起。例如,“苹果”和“梨”这两个词经常用于水果的上下文中。在嵌入空间中,这些单词将靠得很近,使模型更容易根据文档的内容对文档进行分类。

3. 嵌入处理词汇外的单词

TF-IDF 的局限性之一是它无法处理词汇表外的单词,即词汇表中不存在的单词。相比之下,嵌入可以通过将词汇外的单词映射到嵌入空间中的向量来处理词汇外的单词。

4. 嵌入可以在大型数据集上进行预训练

嵌入的另一个优点是它们可以在大型数据集上进行预训练,这可以节省训练模型的时间和资源。预训练的嵌入可用于多种语言,它们可以用作特定 NLP 任务的训练模型的起点。

5. 嵌入可以捕获单词之间的关系

嵌入可以捕获单词之间的关系,例如同义词、反义词和类比。例如,在嵌入空间中,“king”的向量减去“man”的向量加上“woman”的向量将接近“queen”的向量。这使模型更容易学习单词之间的关系,从而提高其在文本分类任务上的性能。

五、使用嵌入和 TF-IDF 的代码片段:

        以下是如何使用嵌入和TF-IDF使用Python和Scikit-learn库进行文本分类的示例:

使用嵌入:

import numpy as np
from gensim.models import Word2Vec# Train a word2vec model on a corpus of text
model = Word2Vec(sentences, size=100, window=5, min_count=1, workers=4)# Convert text into vectors using the word2vec model
vectors = []
for sentence in sentences:vector = np.zeros(100)for word in sentence:vector += model.wv[word]vectors.append(vector)# Use the vectors to train a text classification model

        使用 TF-IDF:

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.svm import SVC# Convert text into TF-IDF vectors
vectorizer = TfidfVectorizer()
vectors = vectorizer.fit_transform(documents)# Use the vectors to train a text classification model
classifier = SVC()
classifier.fit(vectors, labels)

六、使用嵌入和 TF-IDF 的好处

        使用嵌入和 TF-IDF 可以为文本分类任务提供多种好处:

  1. 提高准确性:嵌入和 TF-IDF 可以通过捕获单词的语义和上下文来提高文本分类模型的准确性。
  2. 减少特征空间:嵌入和TF-IDF可以通过将单词表示为向量来减少文本分类模型的特征空间,可以节省计算资源并提高模型的性能。
  3. 泛化:预训练的嵌入可用于将文本分类模型泛化到新的数据集和任务,这可以节省训练模型的时间和资源。

七、结论

        总之,对于文本分类任务,嵌入通常比TF-IDF更好,因为它们捕获单词的语义和上下文,处理词汇外的单词,可以在大型数据集上进行预训练,并且可以捕获单词之间的关系。但是,TF-IDF 在某些情况下仍然有用,例如当重点是特定单词的频率而不是它们的语义含义时。通常,建议尝试这两种方法,以确定哪种方法最适合特定的文本分类任务。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/114719.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

UE4逆向篇-2_各类数据的查找方式

写在前面 1.通过前面的文章,相信各位已经能够自己找到GNames并使用DUMP工具导出GNames了。 2.本篇文章将介绍各种所需数据的查找方法。 一、准备工作 1.CheatEngine,本篇以及后续篇幅的重要工具。 2.一个记事本,保证你能记录下关键信息。…

ubuntu启动模式介绍以及如何进入单用户模式和恢复模式

Ubuntu操作系统提供了多种启动模式,每种模式都有不同的用途和功能。下面将深入介绍Ubuntu的几种启动模式: 正常启动模式(Normal boot):这是默认的启动模式,也是大多数用户使用的模式。在正常启动模式下&am…

在Mac上使用安卓桌面模式

在安装Homeblew的基础上 替换国内源 export HOMEBREW_API_DOMAIN"https://mirrors.tuna.tsinghua.edu.cn/homebrew-bottles/api" export HOMEBREW_BREW_GIT_REMOTE"https://mirrors.tuna.tsinghua.edu.cn/git/homebrew/brew.git" brew update 安装Scrcpy …

屏幕录像推荐:Apeaksoft Screen Recorder 中文 for mac

Apeaksoft Screen Recorder 是一款功能强大的屏幕录制软件,它允许用户在 Windows 和 Mac 系统上捕捉和录制屏幕活动。无论是记录游戏过程、创建教学视频、制作演示文稿还是捕捉在线流媒体内容,该软件都提供了丰富的功能和工具。 以下是 Apeaksoft Scree…

【MATLAB源码-第52期】基于matlab的4用户DS-CDMA误码率仿真,对比不同信道以及不同扩频码。

操作环境: MATLAB 2022a 1、算法描述 1. DS-CDMA系统 DS-CDMA (Direct Sequence Code Division Multiple Access) 是一种多址接入技术,其基本思想是使用伪随机码序列来调制发送信号。DS-CDMA的特点是所有用户在同一频率上同时发送和接收信息&#xf…

《动手学深度学习 Pytorch版》 9.4 双向循环神经网络

之前的序列学习中假设的目标是在给定观测的情况下对下一个输出进行建模,然而也存在需要后文预测前文的情况。 9.4.1 隐马尔可夫模型中的动态规划 数学推导太复杂了,略。 9.4.2 双向模型 双向循环神经网络(bidirectional RNNs)…

Ubuntu 17.10的超震撼声音权限

从GNOME GUADEC 2017开发者大会归来之后,Canonical的Didier Roche就开始了一个日更博客系列,主要讲述即将带来的Ubuntu 17.10(Artful Aardvark)发行版将如何从Unity到GNOME Shell的转变。有趣的是,Ubuntu Unity桌面环境…

gin框架39--重构 BasicAuth 中间件

gin框架39--重构 BasicAuth 中间件 介绍gin BasicAuth 解析自定义newAuth实现基础认证注意事项说明 介绍 每当我们打开一个网址的时候,会自动弹出一个认证界面,要求我们输入用户名和密码,这种BasicAuth是最基础、最常见的认证方式&#xff0…

SIEMENS S7-1200 汽车转弯灯程序 编程与分析

公告 项目地址:https://github.com/MartinxMax/SIEMENS-1200-car_turn_signal 分析 题目: 画IO分配表 输入输出m3.0左转弯开关q0.0左闪灯m3.1右转弯开关q0.1右闪灯m3.2停止开关 博图V16配置 设置PLC的IP地址 允许远程通信访问 将HMI设备拖入 注意,我们这边选择的是HMI连接…

数据结构----算法--五大基本算法(这里没有写分支限界法)和银行家算法

数据结构----算法–五大基本算法(这里没有写分支限界法)和银行家算法 一.贪心算法 1.什么是贪心算法 在有多个选择的时候不考虑长远的情况,只考虑眼前的这一步,在眼前这一步选择当前的最好的方案 二.分治法 1.分治的概念 分…

【JavaEE】Callable 接口

Callable 是一个 interface . 相当于把线程封装了一个 “返回值”. 方便程序猿借助多线程的方式计算结果. 实现Callable也是创建线程的一种方法!!!! Callable的用法非常接近于Runnable,Runnable描述了一个任务&#…

Mysql创建视图中文乱码修改docker里的配置

问题现象: 创建的视图查询无数据,查看创建语句得知,where条件里的中文变成了“???”。 在客户端里查询字符编码: show VARIABLES like %char%;就是character_set_server导致的,它配置的竟然不是utf8,…

通过SVN拉取项目 步骤

方法一:文件夹方式 首先新建一个空的文件夹,例如,名为“demo”的空文件夹 在这个空的文件夹中鼠标右键,点击SVN Checkout 会出现下图所示的页面,第一个输入框是svn的项目地址,第二个输入框是拉取项目所放的…

OpenGL —— 2.6、绘制一个正方体并贴图(附源码,glfw+glad)

源码效果 C源码 纹理图片 需下载stb_image.h这个解码图片的库,该库只有一个头文件。 具体代码: vertexShader.glsl #version 330 corelayout(location 0) in vec3 aPos; layout(location 1) in vec2 aUV;out vec2 outUV;uniform mat4 _viewMatrix; u…

docker 安装 sftpgo

sftpgo 简介 sftpgo 是一个功能齐全且高度可配置的 SFTP 服务器,具有可选的 HTTP/S、FTP/S 和 WebDAV 支持。支持多种存储后端:本地文件系统、加密本地文件系统、S3(兼容)对象存储、Google 云存储、Azure Blob 存储、SFTP。 官…

关于Git的入门教程(附GitHub和Gitee的使用方法)

一. Git 概述 Git是一个免费的、开源的分布式版本控制系统,可以快速高效地处理从小型到大型的各种项目。Git易于学习、占地面积小、性能极快。它具有廉价的本地库,方便的暂存区域和多个工作流分支等特性。其性能优于Subversion、CVS、Perforce和ClearCas…

SpringMVC之全局异常拦截器

在SpringMVC自动装配核心类之WebMvcAutoConfiguration内部实例化EnableWebMvcConfiguration过程中会触发其父类WebMvcConfigurationSupport内部初始化HandlerExceptionResolver。 1.WebMvcConfigurationSupport public class WebMvcConfigurationSupport implements Applicat…

2434: 【区赛】[慈溪2013]统计方格

题目描述 给出一张 n 行 m 列仅由黑白方格组成的黑白图片(行从上到下 1 到 n 编号,列从左到右 1 到 m 编号)。如下图是一张由 17 行 18 列方格构成的黑白图片,图片中的任意一个方格要么是白色,要么是黑色。 仔细观察这…

Python —— UI自动化之Page Object模式

1、Page Object模式简介 1、二层模型 Page Object Model(页面对象模型), 或者也可称之为POM。在UI自动化测试广泛使用的一种分层设计 模式。核心是通过页面层封装所有的页面元素及操作,测试用例层通过调用页面层操作组装业务逻辑。 1、实战 …

springBoot--web--函数式web

函数式web 前言场景给容器中放一个Bean&#xff1a;类型是 RouterFunction<ServerResponse>每个业务准备一个自己的handler使用集合的时候加注解请求的效果 前言 springmvc5.2 以后允许我们使用函数式的方式&#xff0c;定义web的请求处理流程 函数式接口 web请求处理的…