场景
SpringBoot+Redis+自定义注解实现接口防刷(限制不同接口单位时间内最大请求次数):
SpringBoot+Redis+自定义注解实现接口防刷(限制不同接口单位时间内最大请求次数)_redis防刷_霸道流氓气质的博客-CSDN博客
以下接口幂等性的实现方式与上面博客类似,可参考。
接口幂等性
什么是幂等性?
幂等是一个数学与计算机学概念,在数学中某一元运算为幂等时,其作用在任一元素两次后
会和其作用一次的结果相同。在计算机中编程中,一个幂等操作的特点是其任意多次执行所
产生的影响均与一次执行的影响相同。幂等函数或幂等方法是指可以使用相同参数重复执行,
并能获得相同结果的函数。这些函数不会影响系统状态,也不用担心重复执行会对系统造成改变。
什么是接口幂等性?
在HTTP/1.1中,对幂等性进行了定义。它描述了一次和多次请求某一个资源对于资源本身应该具有
同样的结果(网络超时等问题除外),即第一次请求的时候对资源产生了副作用,但是以后的多次请求
都不会再对资源产生副作用。这里的副作用是不会对结果产生破坏或者产生不可预料的结果。
也就是说,其任意多次执行对资源本身所产生的影响均与一次执行的影响相同。
为什么需要实现幂等性?
在接口调用时一般情况下都能正常返回信息不会重复提交,不过在遇见以下情况时可以就会出现问题,
如:
前端重复提交表单:
在填写一些表格时候,用户填写完成提交,很多时候会因网络波动没有及时对用户做出提交成功响应,
致使用户认为没有成功提交,然后一直点提交按钮,这时就会发生重复提交表单请求。
用户恶意进行刷单:
例如在实现用户投票这种功能时,如果用户针对一个用户进行重复提交投票,这样会导致接口接收到
用户重复提交的投票信息,这样会使投票结果与事实严重不符。
接口超时重复提交:
很多时候 HTTP 客户端工具都默认开启超时重试的机制,尤其是第三方调用接口时候,为了防止网络
波动超时等造成的请求失败,都会添加重试机制,导致一个请求提交多次。
消息进行重复消费:
当使用 MQ 消息中间件时候,如果发生消息中间件出现错误未及时提交消费信息,导致发生重复消费。
使用幂等性最大的优势在于使接口保证任何幂等性操作,免去因重试等造成系统产生的未知的问题。
实现接口幂等性的方案有很多,下面记录一种自定义注解加拦截器和redis的实现方式模拟防止订单重复提交。
注:
博客:
霸道流氓气质_C#,架构之路,SpringBoot-CSDN博客
实现
1、新建SpringBoot项目并添加必要的依赖
<dependencies><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId></dependency><dependency><groupId>com.mysql</groupId><artifactId>mysql-connector-j</artifactId><scope>runtime</scope></dependency><dependency><groupId>org.projectlombok</groupId><artifactId>lombok</artifactId><optional>true</optional></dependency><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-test</artifactId><scope>test</scope></dependency><!--MySQL驱动--><dependency><groupId>mysql</groupId><artifactId>mysql-connector-java</artifactId></dependency><!--MyBatis整合SpringBoot框架的起步依赖--><dependency><groupId>org.mybatis.spring.boot</groupId><artifactId>mybatis-spring-boot-starter</artifactId><version>2.2.1</version></dependency><!-- redis 缓存操作 --><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis</artifactId></dependency><!-- 阿里JSON解析器 --><dependency><groupId>com.alibaba</groupId><artifactId>fastjson</artifactId><version>1.2.75</version></dependency></dependencies>
2、修改配置文件yml添加相关配置
# 开发环境配置
server:# 服务器的HTTP端口,默认为8080port: 996servlet:# 应用的访问路径context-path: /tomcat:# tomcat的URI编码uri-encoding: UTF-8# tomcat最大线程数,默认为200max-threads: 800# Tomcat启动初始化的线程数,默认值25min-spare-threads: 30# 数据源
spring:application:name: badao-tcp-demodatasource:url:jdbc:mysql://localhost:3306/test?useUnicode=true&characterEncoding=utf8&zeroDateTimeBehavior=convertToNull&useSSL=true&serverTimezone=GMT%2B8username: rootpassword: 123456driver-class-name: com.mysql.cj.jdbc.Driverdbcp2:min-idle: 5 # 数据库连接池的最小维持连接数initial-size: 5 # 初始化连接数max-total: 5 # 最大连接数max-wait-millis: 150 # 等待连接获取的最大超时时间# redis 配置redis:# 地址#本地测试用host: 127.0.0.1port: 6379password: 123456# 连接超时时间timeout: 10slettuce:pool:# 连接池中的最小空闲连接min-idle: 0# 连接池中的最大空闲连接max-idle: 8# 连接池的最大数据库连接数max-active: 8# #连接池最大阻塞等待时间(使用负值表示没有限制)max-wait: -1ms# mybatis配置
mybatis:mapper-locations: classpath:mapper/*.xml # mapper映射文件位置type-aliases-package: com.badao.demo.entity # 实体类所在的位置configuration:log-impl: org.apache.ibatis.logging.stdout.StdOutImpl #用于控制台打印sql语句
3、新建Redis的两个配置类
RedisConfig:
import org.springframework.cache.annotation.CachingConfigurerSupport;
import org.springframework.cache.annotation.EnableCaching;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.Primary;
import org.springframework.data.redis.connection.RedisConnectionFactory;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.serializer.StringRedisSerializer;
import com.fasterxml.jackson.annotation.JsonAutoDetect;
import com.fasterxml.jackson.annotation.JsonTypeInfo;
import com.fasterxml.jackson.annotation.PropertyAccessor;
import com.fasterxml.jackson.databind.ObjectMapper;
import com.fasterxml.jackson.databind.jsontype.impl.LaissezFaireSubTypeValidator;/*** redis配置**/
@Configuration
@EnableCaching
public class RedisConfig extends CachingConfigurerSupport
{@Bean@SuppressWarnings(value = { "unchecked", "rawtypes" })@Primarypublic RedisTemplate<Object, Object> redisTemplate(RedisConnectionFactory connectionFactory){RedisTemplate<Object, Object> template = new RedisTemplate<>();template.setConnectionFactory(connectionFactory);FastJson2JsonRedisSerializer serializer = new FastJson2JsonRedisSerializer(Object.class);ObjectMapper mapper = new ObjectMapper();mapper.setVisibility(PropertyAccessor.ALL, JsonAutoDetect.Visibility.ANY);mapper.activateDefaultTyping(LaissezFaireSubTypeValidator.instance, ObjectMapper.DefaultTyping.NON_FINAL, JsonTypeInfo.As.PROPERTY);serializer.setObjectMapper(mapper);template.setValueSerializer(serializer);// 使用StringRedisSerializer来序列化和反序列化redis的key值template.setKeySerializer(new StringRedisSerializer());template.afterPropertiesSet();return template;}
}
FastJson2JsonRedisSerializer:
import com.alibaba.fastjson.JSON;
import com.alibaba.fastjson.parser.ParserConfig;
import com.alibaba.fastjson.serializer.SerializerFeature;
import com.fasterxml.jackson.databind.JavaType;
import com.fasterxml.jackson.databind.ObjectMapper;
import com.fasterxml.jackson.databind.type.TypeFactory;
import org.springframework.data.redis.serializer.RedisSerializer;
import org.springframework.data.redis.serializer.SerializationException;
import org.springframework.util.Assert;import java.nio.charset.Charset;/*** Redis使用FastJson序列化**/
public class FastJson2JsonRedisSerializer<T> implements RedisSerializer<T>
{@SuppressWarnings("unused")private ObjectMapper objectMapper = new ObjectMapper();public static final Charset DEFAULT_CHARSET = Charset.forName("UTF-8");private Class<T> clazz;static{ParserConfig.getGlobalInstance().setAutoTypeSupport(true);}public FastJson2JsonRedisSerializer(Class<T> clazz){super();this.clazz = clazz;}@Overridepublic byte[] serialize(T t) throws SerializationException{if (t == null){return new byte[0];}return JSON.toJSONString(t, SerializerFeature.WriteClassName).getBytes(DEFAULT_CHARSET);}@Overridepublic T deserialize(byte[] bytes) throws SerializationException{if (bytes == null || bytes.length <= 0){return null;}String str = new String(bytes, DEFAULT_CHARSET);return JSON.parseObject(str, clazz);}public void setObjectMapper(ObjectMapper objectMapper){Assert.notNull(objectMapper, "'objectMapper' must not be null");this.objectMapper = objectMapper;}protected JavaType getJavaType(Class<?> clazz){return TypeFactory.defaultInstance().constructType(clazz);}
}
4、新建Redis工具类
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.*;
import org.springframework.stereotype.Component;
import java.util.*;
import java.util.concurrent.TimeUnit;/*** spring redis 工具类***/
@SuppressWarnings(value = { "unchecked", "rawtypes" })
@Component
public class RedisCache
{@Autowiredpublic RedisTemplate redisTemplate;@Autowiredpublic StringRedisTemplate stringRedisTemplate;/*** 缓存基本的对象,Integer、String、实体类等** @param key 缓存的键值* @param value 缓存的值* @return 缓存的对象*/public <T> ValueOperations<String, T> setCacheObject(String key, T value){ValueOperations<String, T> operation = redisTemplate.opsForValue();operation.set(key, value);return operation;}/*** 缓存基本的对象,Integer、String、实体类等** @param key 缓存的键值* @param value 缓存的值* @param timeout 时间* @param timeUnit 时间颗粒度* @return 缓存的对象*/public <T> ValueOperations<String, T> setCacheObject(String key, T value, Integer timeout, TimeUnit timeUnit){ValueOperations<String, T> operation = redisTemplate.opsForValue();operation.set(key, value, timeout, timeUnit);return operation;}/*** 获得缓存的基本对象。** @param key 缓存键值* @return 缓存键值对应的数据*/public <T> T getCacheObject(String key){ValueOperations<String, T> operation = redisTemplate.opsForValue();return operation.get(key);}/*** 删除单个对象** @param key*/public void deleteObject(String key){redisTemplate.delete(key);}/*** 删除集合对象** @param collection*/public void deleteObject(Collection collection){redisTemplate.delete(collection);}/*** 缓存List数据** @param key 缓存的键值* @param dataList 待缓存的List数据* @return 缓存的对象*/public <T> ListOperations<String, T> setCacheList(String key, List<T> dataList){ListOperations listOperation = redisTemplate.opsForList();if (null != dataList){int size = dataList.size();for (int i = 0; i < size; i++){listOperation.leftPush(key, dataList.get(i));}}return listOperation;}/*** 获得缓存的list对象** @param key 缓存的键值* @return 缓存键值对应的数据*/public <T> List<T> getCacheList(String key){List<T> dataList = new ArrayList<T>();ListOperations<String, T> listOperation = redisTemplate.opsForList();Long size = listOperation.size(key);for (int i = 0; i < size; i++){dataList.add(listOperation.index(key, i));}return dataList;}/*** 缓存Set** @param key 缓存键值* @param dataSet 缓存的数据* @return 缓存数据的对象*/public <T> BoundSetOperations<String, T> setCacheSet(String key, Set<T> dataSet){BoundSetOperations<String, T> setOperation = redisTemplate.boundSetOps(key);Iterator<T> it = dataSet.iterator();while (it.hasNext()){setOperation.add(it.next());}return setOperation;}/*** 获得缓存的set** @param key* @return*/public <T> Set<T> getCacheSet(String key){Set<T> dataSet = new HashSet<T>();BoundSetOperations<String, T> operation = redisTemplate.boundSetOps(key);dataSet = operation.members();return dataSet;}/*** 缓存Map** @param key* @param dataMap* @return*/public <T> HashOperations<String, String, T> setCacheMap(String key, Map<String, T> dataMap){HashOperations hashOperations = redisTemplate.opsForHash();if (null != dataMap){for (Map.Entry<String, T> entry : dataMap.entrySet()){hashOperations.put(key, entry.getKey(), entry.getValue());}}return hashOperations;}/*** 获得缓存的Map** @param key* @return*/public <T> Map<String, T> getCacheMap(String key){Map<String, T> map = redisTemplate.opsForHash().entries(key);return map;}/*** 获得缓存的基本对象列表** @param pattern 字符串前缀* @return 对象列表*/public Collection<String> keys(String pattern){return redisTemplate.keys(pattern);}/*** 如果redis中不存在则存储进redis* @return*/public Boolean setIfAbsent(Object key,Object value,long timeout){return redisTemplate.opsForValue().setIfAbsent(key, value,timeout, TimeUnit.SECONDS);}
}
5、新建自定义注解类Idempotent
import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;@Target(ElementType.METHOD)
@Retention(RetentionPolicy.RUNTIME)
public @interface Idempotent {/*** 用于拼接幂等性判断的key的入参字段* @return*/String[] fields();/*** 用于接口幂等性校验的Redis中Key的过期时间,单位秒* @return*/long timeout() default 10l;
}
6、创建自定义拦截器IdempotentInterceptor
import com.badao.demo.annotation.Idempotent;
import com.badao.demo.utils.RedisCache;
import org.springframework.stereotype.Component;
import org.springframework.web.method.HandlerMethod;
import org.springframework.web.servlet.HandlerInterceptor;
import javax.annotation.Resource;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.io.OutputStream;@Component
public class IdempotentInterceptor implements HandlerInterceptor {@Resourceprivate RedisCache redisCache;@Overridepublic boolean preHandle(HttpServletRequest request, HttpServletResponse response, Object handler) throws Exception {Idempotent idempotent = ((HandlerMethod)handler).getMethodAnnotation(Idempotent.class);if(idempotent == null){return true;}String idempotentKey = this.idempotentKey(idempotent,request);Boolean success = redisCache.setIfAbsent(idempotentKey,1, idempotent.timeout());if(Boolean.FALSE.equals(success)){render(response,"请勿重复请求");return false;}return true;}private String idempotentKey(Idempotent idempotent,HttpServletRequest request){String[] fields = idempotent.fields();StringBuilder idempotentKey = new StringBuilder();for (String field : fields) {String parameter = request.getParameter(field);idempotentKey.append(parameter);}return idempotentKey.toString();}/*** 接口渲染* @param response* @throws Exception*/private void render(HttpServletResponse response,String message)throws Exception {response.setContentType("application/json;charset=UTF-8");OutputStream out = response.getOutputStream();out.write(message.getBytes("UTF-8"));out.flush();out.close();}
}
7、配置拦截器IdempotentInterceptor注册到SpringMVC的拦截器链中
import org.springframework.context.annotation.Configuration;
import org.springframework.web.servlet.config.annotation.InterceptorRegistry;
import org.springframework.web.servlet.config.annotation.WebMvcConfigurationSupport;
import javax.annotation.Resource;/*** 配置拦截器IdempotentInterceptor注册到SpringMVC的拦截器链中*/
@Configuration
public class WebConfig extends WebMvcConfigurationSupport {@Resourceprivate IdempotentInterceptor idempotentInterceptor;@Overrideprotected void addInterceptors(InterceptorRegistry registry) {registry.addInterceptor(idempotentInterceptor);}
}
8、创建测试接口并添加自定义注解
import com.badao.demo.annotation.Idempotent;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;@RestController
public class TestController {@Idempotent(fields = {"orderId"},timeout = 10)@GetMapping("/test")public String test(@RequestParam("orderId") String orderId, String remark){return "success";}
}
这里指定orderId为订单唯一ID参数,并设置在10秒内如果此字段相同的请求会被拦截
9、创建测试方法
import org.junit.jupiter.api.Test;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.http.MediaType;
import org.springframework.test.web.servlet.MockMvc;
import org.springframework.test.web.servlet.request.MockMvcRequestBuilders;
import org.springframework.test.web.servlet.setup.MockMvcBuilders;
import org.springframework.web.context.WebApplicationContext;@SpringBootTest
class IdempotenceTest {@Autowiredprivate WebApplicationContext webApplicationContext;@Testvoid test1() throws Exception {//初始化MockMvcMockMvc mockMvc = MockMvcBuilders.webAppContextSetup(webApplicationContext).build();//循环调用5次进行测试for (int i = 1; i <= 5; i++) {System.out.println("第"+i+"次调用接口");//调用接口String result = mockMvc.perform(MockMvcRequestBuilders.get("/test").accept(MediaType.TEXT_HTML).param("orderId","001").param("remark","badao")).andReturn().getResponse().getContentAsString();System.out.println(result);}}
}
测试结果
使用postman等接口测试工具复测验证