💡💡💡本文解决什么问题:多尺度空洞注意力(MSDA)采用多头的设计,在不同的头部使用不同的空洞率执行滑动窗口膨胀注意力(SWDA),全网独家首发,创新力度十足,适合科研
1)与C2f结合;
MSDA | GFLOPs从9.6降低至8.5, mAP50从0.921降低至0.909,mAP50-95从0.697提升至0.726
Yolov8-Pose关键点检测专栏介绍:https://blog.csdn.net/m0_63774211/category_12398833.html
✨✨✨手把手教你从数据标记到生成适合Yolov8-pose的yolo数据集;
🚀🚀🚀模型性能提升、pose模式部署能力;
🍉🍉🍉应用范围:工业工件定位、人脸、摔倒检测等支持各个关键点检测;
1.Yolov8-pose引入MSDA性能
直接先上图