java中的容器(集合),HashMap底层原理,ArrayList、LinkedList、Vector区别,hashMap加载因子0.75原因

一、java中的容器

          集合主要分为Collection和Map两大接口;Collection集合的子接口有List、Set;List集合的实现类有ArrayList底层是数组、LinkedList底层是双向非循环列表、Vector;Set集合的实现类有HashSet、TreeSet;Map集合的实现类有HashMap、TreeMap、HashTable;

(补充:HashTable与HashMap类似,线程安全,子接口有Properties接口,线程安全)

1.HashMap底层原理?

        HashMap是以键值对形式存储数据的,底层由散列表组成,jdk1.8之前是数组+链表,jdk1.8之后数组+链表+红黑树组成。( 默认数组长度:16)

        当添加元素时,链表的长度大于等于8,数组的长度小于64,将数组长度扩容原数组长度的2倍;当链表的长度大于等于8,并且数组的长度大于等于64时将链表转为红黑树。红黑树是平衡二叉搜索树,效率高。

        当删除元素时,链表长度小于7,将红黑树转为链表。

        (补充:jdk1.8之前头插法,jdk1.8及之后尾插法;1.7创建map时默认容量16,1.8创建map时默认无容量,添加后为初始化长度为16

        Hash冲突:链地址法、开放地址法,再次hash法,建立公共溢出区)

2.ArrayList、LinkedList、Vector集合的区别?

ArrayList集合的底层是数组,适用于集合的遍历和随机访问某个元素的场景;添加元素时,每次扩容为原数组长度的1.5倍。(长度默认0,调用add方法后没有指定长度为10)

LinkedList集合的底层是双向非循环链表,中间插入和删除元素效率比较高,遍历效率比较低。

Vector集合与ArrayList类似,底层也是数组,线程是安全的,每个方法都由synchronized修饰,执行效率较低。(每次扩容为原数组长度2倍)

(补充:线程安全可以使用juc提供的集合CopyOnWriteArrayList写时复制)

二、为什么 HashMap 的加载因子是0.75?

为什么HashMap需要加载因子

  • 解决冲突有什么方法?

    • 1.开放定址法

    • 2.再哈希法

    • 3.建立一个公共溢出区

    • 4.链地址法(拉链法)

  • 为什么HashMap加载因子一定是0.75?而不是0.8,0.6?

  • 那么为什么不可以是0.8或者0.6呢?

        HashMap的底层是哈希表,是存储键值对的结构类型,它需要通过一定的计算才可以确定数据在哈希表中的存储位置:

static final int hash(Object key) {int h;return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
// AbstractMap
public int hashCode() {int h = 0;Iterator<Entry<K,V>> i = entrySet().iterator();while (i.hasNext())h += i.next().hashCode();return h;
}

        一般的数据结构,不是查询快就是插入快,HashMap就是一个插入慢、查询快的数据结构。

        但这种数据结构容易产生两种问题:

                ① 如果空间利用率高,那么经过的哈希算法计算存储位置的时候,会发现很多存储位置已经有数据了(哈希冲突);

                ② 如果为了避免发生哈希冲突,增大数组容量,就会导致空间利用率不高。

加载因子表示Hash表中元素的填满程度

1. 加载因子

加载因子 = 填入表中的元素个数 / 散列表的长度

加载因子越大,填满的元素越多,空间利用率越高,但发生冲突的机会变大了;

加载因子越小,填满的元素越少,冲突发生的机会减小,但空间浪费了更多了,而且还会提高扩容rehash操作的次数。

冲突的机会越大,说明需要查找的数据还需要通过另一个途径查找,这样查找的成本就越高。因此,必须在“冲突的机会”与“空间利用率”之间,寻找一种平衡与折衷。

所以我们也能知道,影响查找效率的因素主要有这几种:

  • 散列函数是否可以将哈希表中的数据均匀地散列?

  • 怎么处理冲突?

  • 哈希表的加载因子怎么选择?

2. 解决冲突有什么方法?

1. 开放定址法

Hi = (H(key) + di) MOD m,其中i=1,2,…,k(k<=m-1)

        H(key)为哈希函数,m为哈希表表长,di为增量序列,i为已发生冲突的次数。其中,开放定址法根据步长不同可以分为3种:

1.1 线性探查法(Linear Probing):di = 1,2,3,…,m-1

简单地说,就是以当前冲突位置为起点,步长为1循环查找,直到找到一个空的位置,如果循环完了都占不到位置,就说明容器已经满了。举个栗子,就像你在饭点去街上吃饭,挨家去看是否有位置一样。

1.2 平方探测法(Quadratic Probing):di = ±12, ±22,±32,…,±k2(k≤m/2)

相对于线性探查法,这就相当于的步长为di = i2来循环查找,直到找到空的位置。以上面那个例子来看,现在你不是挨家去看有没有位置了,而是拿手机算去第i2家店,然后去问这家店有没有位置。

1.3 伪随机探测法:di = 伪随机数序列

这个就是取随机数来作为步长。还是用上面的例子,这次就是完全按心情去选一家店问有没有位置了。

但开放定址法有这些缺点:

  • 这种方法建立起来的哈希表,当冲突多的时候数据容易堆集在一起,这时候对查找不友好;

  • 删除结点的时候不能简单将结点的空间置空,否则将截断在它填入散列表之后的同义词结点查找路径。因此如果要删除结点,只能在被删结点上添加删除标记,而不能真正删除结点;

  • 如果哈希表的空间已经满了,还需要建立一个溢出表,来存入多出来的元素。

2. 再哈希法

Hi = RHi(key), 其中i=1,2,…,k

        RHi()函数是不同于H()的哈希函数,用于同义词发生地址冲突时,计算出另一个哈希函数地址,直到不发生冲突位置。这种方法不容易产生堆集,但是会增加计算时间。

所以再哈希法的缺点是:增加了计算时间。

3. 建立一个公共溢出区

        假设哈希函数的值域为[0, m-1],设向量HashTable[0,…,m-1]为基本表,每个分量存放一个记录,另外还设置了向量OverTable[0,…,v]为溢出表。基本表中存储的是关键字的记录,一旦发生冲突,不管他们哈希函数得到的哈希地址是什么,都填入溢出表。

        但这个方法的缺点在于:查找冲突数据的时候,需要遍历溢出表才能得到数据。

4. 链地址法(拉链法)

将冲突位置的元素构造成链表。在添加数据的时候,如果哈希地址与哈希表上的元素冲突,就放在这个位置的链表上。

拉链法的优点:

  • 处理冲突的方式简单,且无堆集现象,非同义词绝不会发生冲突,因此平均查找长度较短;

  • 由于拉链法中各链表上的结点空间是动态申请的,所以它更适合造表前无法确定表长的情况;

  • 删除结点操作易于实现,只要简单地删除链表上的相应的结点即可。

拉链法的缺点:需要额外的存储空间。

从HashMap的底层结构中我们可以看到,HashMap采用是数组+链表/红黑树的组合来作为底层结构,也就是开放地址法+链地址法的方式来实现HashMap。

3. 为什么HashMap加载因子一定是0.75?而不是0.8,0.6?

        HashMap的底层其实也是哈希表(散列表),而解决冲突的方式是链地址法。HashMap的初始容量大小默认是16,为了减少冲突发生的概率,当HashMap的数组长度到达一个临界值的时候,就会触发扩容,把所有元素rehash之后再放在扩容后的容器中,这是一个相当耗时的操作。

而这个临界值就是由加载因子和当前容器的容量大小来确定的:

临界值 = DEFAULT_INITIAL_CAPACITY * DEFAULT_LOAD_FACTOR

即默认情况下是16x0.75=12时,就会触发扩容操作。

那么为什么选择了0.75作为HashMap的加载因子呢?这个跟一个统计学里很重要的原理——泊松分布有关。

        泊松分布是统计学和概率学常见的离散概率分布,适用于描述单位时间内随机事件发生的次数的概率分布。有兴趣推荐:维基百科或者阮一峰老师的这篇文章:泊松分布和指数分布

        等号的左边,P 表示概率,N表示某种函数关系,t 表示时间,n 表示数量。等号的右边,λ 表示事件的频率。

        在HashMap的源码中有这么一段注释:

* Ideally, under random hashCodes, the frequency of
* nodes in bins follows a Poisson distribution
* (http://en.wikipedia.org/wiki/Poisson_distribution) with a
* parameter of about 0.5 on average for the default resizing
* threshold of 0.75, although with a large variance because of
* resizing granularity. Ignoring variance, the expected
* occurrences of list size k are (exp(-0.5) * pow(0.5, k) /
* factorial(k)). The first values are:
* 0:    0.60653066
* 1:    0.30326533
* 2:    0.07581633
* 3:    0.01263606
* 4:    0.00157952
* 5:    0.00015795
* 6:    0.00001316
* 7:    0.00000094
* 8:    0.00000006
* more: less than 1 in ten million

        理想情况下,使用随机哈希码,在扩容阈值(加载因子)为0.75的情况下,节点出现在频率在Hash桶(表)中遵循参数平均为0.5的泊松分布。忽略方差,即X = λt,P(λt = k),其中λt = 0.5的情况,按公式:

        计算结果如上述的列表所示,当一个bin中的链表长度达到8个元素的时候,概率为0.00000006,几乎是一个不可能事件。

        所以其实常数0.5是作为参数代入泊松分布来计算的,而加载因子0.75是作为一个条件,当HashMap长度为length/size ≥ 0.75时就扩容,在这个条件下,冲突后的拉链长度和概率结果为:

0:    0.60653066
1:    0.30326533
2:    0.07581633
3:    0.01263606
4:    0.00157952
5:    0.00015795
6:    0.00001316
7:    0.00000094
8:    0.00000006

4.为什么不可以是0.8或者0.6呢?

HashMap中除了哈希算法之外,有两个参数影响了性能:初始容量和加载因子。初始容量是哈希表在创建时的容量,加载因子是哈希表在其容量自动扩容之前可以达到多满的一种度量。

5. 在维基百科来描述加载因子:

        对于开放定址法,加载因子是特别重要因素,应严格限制在0.7-0.8以下。超过0.8,查表时的CPU缓存不命中(cache missing)按照指数曲线上升。因此,一些采用开放定址法的hash库,如Java的系统库限制了加载因子为0.75,超过此值将resize散列表。

        在设置初始容量时应该考虑到映射中所需的条目数及其加载因子,以便最大限度地减少扩容rehash操作次数,所以,一般在使用HashMap时建议根据预估值设置初始容量,以便减少扩容操作。

        选择0.75作为默认的加载因子,完全是时间和空间成本上寻求的一种折衷选择。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/113051.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

优化销售策略,突破企业全面预算管理难题

传统的企业年度销售计划往往会消耗企业内部人员很多精力和时间&#xff0c;比如需要收集数据、处理电子表格、确定项目优先级、预测未来发展以及为次年的费用制定预算等。然而随着这些繁琐的工作不断进行&#xff0c;其中的准确性和价值也受到了一定的怀疑。虽然销售计划仍按着…

【API篇】五、Flink分流合流API

文章目录 1、filter算子实现分流2、分流&#xff1a;使用侧输出流3、合流&#xff1a;union4、合流&#xff1a;connect5、connect案例 分流&#xff0c;很形象的一个词&#xff0c;就像一条大河&#xff0c;遇到岸边有分叉的&#xff0c;而形成了主流和测流。对于数据流也一样…

智能电表上的模块发热正常吗?

智能电表是一种可以远程抄表、计费、控制和管理的电力计量设备&#xff0c;它可以实现智能化、信息化和网络化的电力用电管理。智能电表的主要组成部分包括电能计量模块、通信模块、控制模块和显示模块等。其中&#xff0c;通信模块和控制模块是智能电表的核心部件&#xff0c;…

虹科 | 解决方案 | 机械免拆压力测试方案

对于发动机的气门卡滞或气门开闭时刻错误、活塞环磨损、喷油嘴泄漏/堵塞等故障&#xff0c;往往需要解体发动机或拆卸部件才能发现&#xff1b;而对于某些轻微的故障&#xff0c;即使解体了发动机后也经常难于肉眼判别 虹科Pico提供的WPS500压力测试方案&#xff0c;可以动态测…

为什么索引要用B+树来实现呢,而不是B树

首先&#xff0c;常规的数据库存储引擎&#xff0c;一般都是采用 B 树或者 B树来实现索引的存储。 B树 因为 B 树是一种多路平衡树&#xff0c;用这种存储结构来存储大量数据&#xff0c;它的整个高度会相比二叉树来说&#xff0c;会矮很多。 而对于数据库来说&#xff0c;所有…

修改echarts的tooltip样式 折线图如何配置阴影并实现渐变色和自适应

图片展示 一、引入echarts 这里不用多解释 vue里使用 import echarts from “echarts”; html页面引用js文件或用script标签引用 二、定义一个具有宽高的dom div <div id"echart-broken" style"width:400px;height: 200px;"></div>三、定义…

layui框架实战案例(21):layui table单元格显示图片导致复选框冗余的解决方案

图片自适应表格CSS 为防止单元格内的图片不能正常显示&#xff0c;需本地重写CSS。 /*layui-table图片自适应*/ .layui-table-cell {height: auto;line-height: 20px;}.layui-table-cell img {height: 50%;max-width: 50%; }列代码 , cols: [[{type: checkbox,fixed:left, w…

非科班,补基础

大家好&#xff0c;我是大彬~ 今天跟大家分享知识星球小伙伴关于【非科班转码如何补基础】的提问。 往期星球提问整理&#xff1a; 读博&#xff1f;找工作&#xff1f; 性格测试真的很重要 想找一份实习工作&#xff0c;需要准备什么 球友提问&#xff1a; 大彬大佬&#xf…

Vue 3使用 Iconify 作为图标库与图标离线加载的方法、 Icones 开源在线图标浏览库的使用

之前一直naive-ui搭配使用的是xicons&#xff0c;后来发现Iconify支持的图标合集更多&#xff0c;因此转而使用Iconify。 与FontAwesome不同的是&#xff0c;Iconify配合Icones相当于是一个合集&#xff0c;Iconify提供了快捷引入图标的方式&#xff0c;而Icones是一个大的图标…

数据结构与算法-(10)---列表(List)

&#x1f308;write in front&#x1f308; &#x1f9f8;大家好&#xff0c;我是Aileen&#x1f9f8;.希望你看完之后&#xff0c;能对你有所帮助&#xff0c;不足请指正&#xff01;共同学习交流. &#x1f194;本文由Aileen_0v0&#x1f9f8; 原创 CSDN首发&#x1f412; 如…

力扣每日一题52:N皇后问题||

题目描述&#xff1a; n 皇后问题 研究的是如何将 n 个皇后放置在 n n 的棋盘上&#xff0c;并且使皇后彼此之间不能相互攻击。 给你一个整数 n &#xff0c;返回 n 皇后问题 不同的解决方案的数量。 示例 1&#xff1a; 输入&#xff1a;n 4 输出&#xff1a;2 解释&#…

【微信小程序】后台数据交互于WX文件使用

目录 一、前期准备 1.1 数据库准备 1.2 后端数据获取接口编写 1.3 前端配置接口 1.4 封装微信的request请求 二、WXS文件的使用 2.1 WXS简介 2.2 WXS使用 三、后台数据交互完整代码 3.1 WXML 3.2 JS 3.3 WXSS 效果图 一、前期准备 1.1 数据库准备 创建数据库&…

TX Text Control.NET 32.0 For WPF

TX Text Control 支持VISUAL STUDIO 2022、.NET 5 和 .NET 6 支持 .NET WPF 应用程序的文档处理 将文档编辑、创建和 PDF 生成添加到您的 WPF 应用程序中。 视窗用户界面 功能齐全的文档编辑器 TX Text Control 是一款完全可编程的丰富编辑控件&#xff0c;它在专为 Visual Stu…

同步网盘选择指南:哪个同步网盘更好用?

同步盘是当下热门的云存储服务之一&#xff0c;它可以将您的文件在不同设备之间进行同步&#xff0c;使您可以随时随地访问和共享您的文件&#xff0c;因此受到了许多用户的喜爱。 一、什么是同步盘 首先到底什么是同步盘&#xff1f;同步盘是指一种云存储服务&#xff0c;它…

零基础Linux_20(进程信号)内核态和用户态+处理信号+不可重入函数+volatile

目录 1. 内核态和用户态 1.1 内核态和用户态概念 1.2 内核态和用户态转化 2. 处理信号 2.2 捕捉信号 2.2 系统调用sigaction 3. 不可重入函数 4. volatile关键字 5. SIGCHLD信号&#xff08;了解&#xff09; 6. 笔试选择题 答案及解析 本篇完。 1. 内核态和用户态…

【吞噬星空】又被骂,罗峰杀人目无法纪,但官方留后手,增加审判戏份

Hello,小伙伴们&#xff0c;我是小郑继续为大家深度解析国漫吞噬星空资讯。 吞噬星空动画中&#xff0c;罗峰复仇的戏份&#xff0c;简直是帅翻了&#xff0c;尤其是秒杀阿特金三大巨头&#xff0c;让人看的也是相当的解气&#xff0c;相当的爽&#xff0c;一点都不拖沓&#x…

fastadmin笔记,fastadmin表格功能

fastadmin笔记 官方文档请到&#xff1a; https://ask.fastadmin.net/article/323.html自行查阅 1、默认有个切换功能。 浏览模式可以切换卡片视图和表格视图两种模式&#xff0c;如果不需要此功能 在该控制器对应的js 文件中添加上showToggle:false即可。 2、导出功能 …

linux基础IO

文章目录 前言一、基础IO1、文件预备知识1.1 文件类的系统调用接口1.2 复习c语言接口 2、文件类的系统调用接口2.1 open系统调用2.2 close系统调用2.3 write系统调用2.4 read系统调用 3、文件描述符3.1 文件描述符fd介绍3.2 文件描述符fd分配规则与重定向3.3 重定向原理3.4输入…

armbian安装gcc、g++

文章目录 安装GCC安装G 安装GCC 打开终端&#xff0c;更新软件包列表&#xff1a; sudo apt update安装GCC&#xff1a; sudo apt install gcc如果需要安装特定版本的GCC&#xff0c;可以使用以下命令&#xff1a; sudo apt install gcc-<version> # sudo apt install g…