竞赛选题 深度学习乳腺癌分类

文章目录

  • 1 前言
  • 2 前言
  • 3 数据集
    • 3.1 良性样本
    • 3.2 病变样本
  • 4 开发环境
  • 5 代码实现
    • 5.1 实现流程
    • 5.2 部分代码实现
      • 5.2.1 导入库
      • 5.2.2 图像加载
      • 5.2.3 标记
      • 5.2.4 分组
      • 5.2.5 构建模型训练
  • 6 分析指标
    • 6.1 精度,召回率和F1度量
    • 6.2 混淆矩阵
  • 7 结果和结论
  • 8 最后

1 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学习乳腺癌分类

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 前言

乳腺癌是全球第二常见的女性癌症。2012年,它占所有新癌症病例的12%,占所有女性癌症病例的25%。

当乳腺细胞生长失控时,乳腺癌就开始了。这些细胞通常形成一个肿瘤,通常可以在x光片上直接看到或感觉到有一个肿块。如果癌细胞能生长到周围组织或扩散到身体的其他地方,那么这个肿瘤就是恶性的。

以下是报告:

  • 大约八分之一的美国女性(约12%)将在其一生中患上浸润性乳腺癌。
  • 2019年,美国预计将有268,600例新的侵袭性乳腺癌病例,以及62,930例新的非侵袭性乳腺癌。
  • 大约85%的乳腺癌发生在没有乳腺癌家族史的女性身上。这些发生是由于基因突变,而不是遗传突变
  • 如果一名女性的一级亲属(母亲、姐妹、女儿)被诊断出患有乳腺癌,那么她患乳腺癌的风险几乎会增加一倍。在患乳腺癌的女性中,只有不到15%的人的家人被诊断出患有乳腺癌。

3 数据集

该数据集为学长实验室数据集。

搜先这是图像二分类问题。我把数据拆分如图所示


dataset train
benign
b1.jpg
b2.jpg
//
malignant
m1.jpg
m2.jpg
// validation
benign
b1.jpg
b2.jpg
//
malignant
m1.jpg
m2.jpg
//…

训练文件夹在每个类别中有1000个图像,而验证文件夹在每个类别中有250个图像。

3.1 良性样本

在这里插入图片描述
在这里插入图片描述

3.2 病变样本

在这里插入图片描述
在这里插入图片描述

4 开发环境

  • scikit-learn
  • keras
  • numpy
  • pandas
  • matplotlib
  • tensorflow

5 代码实现

5.1 实现流程

完整的图像分类流程可以形式化如下:

我们的输入是一个由N个图像组成的训练数据集,每个图像都有相应的标签。

然后,我们使用这个训练集来训练分类器,来学习每个类。

最后,我们通过让分类器预测一组从未见过的新图像的标签来评估分类器的质量。然后我们将这些图像的真实标签与分类器预测的标签进行比较。

5.2 部分代码实现

5.2.1 导入库

import json
import math
import os
import cv2
from PIL import Image
import numpy as np
from keras import layers
from keras.applications import DenseNet201
from keras.callbacks import Callback, ModelCheckpoint, ReduceLROnPlateau, TensorBoard
from keras.preprocessing.image import ImageDataGenerator
from keras.utils.np_utils import to_categorical
from keras.models import Sequential
from keras.optimizers import Adam
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.metrics import cohen_kappa_score, accuracy_score
import scipy
from tqdm import tqdm
import tensorflow as tf
from keras import backend as K
import gc
from functools import partial
from sklearn import metrics
from collections import Counter
import json
import itertools

5.2.2 图像加载

接下来,我将图像加载到相应的文件夹中。

def Dataset_loader(DIR, RESIZE, sigmaX=10):IMG = []read = lambda imname: np.asarray(Image.open(imname).convert("RGB"))for IMAGE_NAME in tqdm(os.listdir(DIR)):PATH = os.path.join(DIR,IMAGE_NAME)_, ftype = os.path.splitext(PATH)if ftype == ".png":img = read(PATH)img = cv2.resize(img, (RESIZE,RESIZE))IMG.append(np.array(img))return IMGbenign_train = np.array(Dataset_loader('data/train/benign',224))
malign_train = np.array(Dataset_loader('data/train/malignant',224))
benign_test = np.array(Dataset_loader('data/validation/benign',224))
malign_test = np.array(Dataset_loader('data/validation/malignant',224))

5.2.3 标记

之后,我创建了一个全0的numpy数组,用于标记良性图像,以及全1的numpy数组,用于标记恶性图像。我还重新整理了数据集,并将标签转换为分类格式。

benign_train_label = np.zeros(len(benign_train))
malign_train_label = np.ones(len(malign_train))
benign_test_label = np.zeros(len(benign_test))
malign_test_label = np.ones(len(malign_test))X_train = np.concatenate((benign_train, malign_train), axis = 0)
Y_train = np.concatenate((benign_train_label, malign_train_label), axis = 0)
X_test = np.concatenate((benign_test, malign_test), axis = 0)
Y_test = np.concatenate((benign_test_label, malign_test_label), axis = 0)s = np.arange(X_train.shape[0])
np.random.shuffle(s)
X_train = X_train[s]
Y_train = Y_train[s]s = np.arange(X_test.shape[0])
np.random.shuffle(s)
X_test = X_test[s]
Y_test = Y_test[s]Y_train = to_categorical(Y_train, num_classes= 2)
Y_test = to_categorical(Y_test, num_classes= 2)

5.2.4 分组

然后我将数据集分成两组,分别具有80%和20%图像的训练集和测试集。让我们看一些样本良性和恶性图像

x_train, x_val, y_train, y_val = train_test_split(X_train, Y_train, test_size=0.2, random_state=11
)w=60
h=40
fig=plt.figure(figsize=(15, 15))
columns = 4
rows = 3for i in range(1, columns*rows +1):ax = fig.add_subplot(rows, columns, i)if np.argmax(Y_train[i]) == 0:ax.title.set_text('Benign')else:ax.title.set_text('Malignant')plt.imshow(x_train[i], interpolation='nearest')
plt.show()

在这里插入图片描述

5.2.5 构建模型训练

我使用的batch值为16。batch是深度学习中最重要的超参数之一。我更喜欢使用更大的batch来训练我的模型,因为它允许从gpu的并行性中提高计算速度。但是,众所周知,batch太大会导致泛化效果不好。在一个极端下,使用一个等于整个数据集的batch将保证收敛到目标函数的全局最优。但是这是以收敛到最优值较慢为代价的。另一方面,使用更小的batch已被证明能够更快的收敛到好的结果。这可以直观地解释为,较小的batch允许模型在必须查看所有数据之前就开始学习。使用较小的batch的缺点是不能保证模型收敛到全局最优。因此,通常建议从小batch开始,通过训练慢慢增加batch大小来加快收敛速度。

我还做了一些数据扩充。数据扩充的实践是增加训练集规模的一种有效方式。训练实例的扩充使网络在训练过程中可以看到更加多样化,仍然具有代表性的数据点。

然后,我创建了一个数据生成器,自动从文件夹中获取数据。Keras为此提供了方便的python生成器函数。

BATCH_SIZE = 16train_generator = ImageDataGenerator(zoom_range=2,  # 设置范围为随机缩放rotation_range = 90,horizontal_flip=True,  # 随机翻转图片vertical_flip=True,  # 随机翻转图片)

下一步是构建模型。这可以通过以下3个步骤来描述:

  • 我使用DenseNet201作为训练前的权重,它已经在Imagenet比赛中训练过了。设置学习率为0.0001。

  • 在此基础上,我使用了globalaveragepooling层和50%的dropout来减少过拟合。

  • 我使用batch标准化和一个以softmax为激活函数的含有2个神经元的全连接层,用于2个输出类的良恶性。

  • 我使用Adam作为优化器,使用二元交叉熵作为损失函数。

    def build_model(backbone, lr=1e-4):model = Sequential()model.add(backbone)model.add(layers.GlobalAveragePooling2D())model.add(layers.Dropout(0.5))model.add(layers.BatchNormalization())model.add(layers.Dense(2, activation='softmax'))model.compile(loss='binary_crossentropy',optimizer=Adam(lr=lr),metrics=['accuracy'])return modelresnet = DenseNet201(weights='imagenet',include_top=False,input_shape=(224,224,3)
    )model = build_model(resnet ,lr = 1e-4)
    model.summary()
    

让我们看看每个层中的输出形状和参数。

在这里插入图片描述
在训练模型之前,定义一个或多个回调函数很有用。非常方便的是:ModelCheckpoint和ReduceLROnPlateau。

  • ModelCheckpoint:当训练通常需要多次迭代并且需要大量的时间来达到一个好的结果时,在这种情况下,ModelCheckpoint保存训练过程中的最佳模型。

  • ReduceLROnPlateau:当度量停止改进时,降低学习率。一旦学习停滞不前,模型通常会从将学习率降低2-10倍。这个回调函数会进行监视,如果在’patience’(耐心)次数下,模型没有任何优化的话,学习率就会降低。

在这里插入图片描述

该模型我训练了60个epoch。

learn_control = ReduceLROnPlateau(monitor='val_acc', patience=5,verbose=1,factor=0.2, min_lr=1e-7)filepath="weights.best.hdf5"
checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=1, save_best_only=True, mode='max')history = model.fit_generator(train_generator.flow(x_train, y_train, batch_size=BATCH_SIZE),steps_per_epoch=x_train.shape[0] / BATCH_SIZE,epochs=20,validation_data=(x_val, y_val),callbacks=[learn_control, checkpoint]
)

6 分析指标

评价模型性能最常用的指标是精度。然而,当您的数据集中只有2%属于一个类(恶性),98%属于其他类(良性)时,错误分类的分数就没有意义了。你可以有98%的准确率,但仍然没有发现恶性病例,即预测的时候全部打上良性的标签,这是一个不好的分类器。

history_df = pd.DataFrame(history.history)
history_df[['loss', 'val_loss']].plot()history_df = pd.DataFrame(history.history)
history_df[['acc', 'val_acc']].plot()

在这里插入图片描述

6.1 精度,召回率和F1度量

为了更好地理解错误分类,我们经常使用以下度量来更好地理解真正例(TP)、真负例(TN)、假正例(FP)和假负例(FN)。

精度反映了被分类器判定的正例中真正的正例样本的比重。

召回率反映了所有真正为正例的样本中被分类器判定出来为正例的比例。

F1度量是准确率和召回率的调和平均值。

在这里插入图片描述

6.2 混淆矩阵

混淆矩阵是分析误分类的一个重要指标。矩阵的每一行表示预测类中的实例,而每一列表示实际类中的实例。对角线表示已正确分类的类。这很有帮助,因为我们不仅知道哪些类被错误分类,还知道它们为什么被错误分类。

from sklearn.metrics import classification_report
classification_report( np.argmax(Y_test, axis=1), np.argmax(Y_pred_tta, axis=1))from sklearn.metrics import confusion_matrixdef plot_confusion_matrix(cm, classes,normalize=False,title='Confusion matrix',cmap=plt.cm.Blues):if normalize:cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]print("Normalized confusion matrix")else:print('Confusion matrix, without normalization')print(cm)plt.imshow(cm, interpolation='nearest', cmap=cmap)plt.title(title)plt.colorbar()tick_marks = np.arange(len(classes))plt.xticks(tick_marks, classes, rotation=55)plt.yticks(tick_marks, classes)fmt = '.2f' if normalize else 'd'thresh = cm.max() / 2.for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):plt.text(j, i, format(cm[i, j], fmt),horizontalalignment="center",color="white" if cm[i, j] > thresh else "black")plt.ylabel('True label')plt.xlabel('Predicted label')plt.tight_layout()cm = confusion_matrix(np.argmax(Y_test, axis=1), np.argmax(Y_pred, axis=1))cm_plot_label =['benign', 'malignant']
plot_confusion_matrix(cm, cm_plot_label, title ='Confusion Metrix for Skin Cancer')

在这里插入图片描述

7 结果和结论

在这里插入图片描述
在这个博客中,学长我演示了如何使用卷积神经网络和迁移学习从一组显微图像中对良性和恶性乳腺癌进行分类,希望对大家有所帮助。

8 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/111805.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Windows 事件日志监控

Windows 事件日志是记录 Microsoft 系统上发生的所有活动的文件,在 Windows 环境中,将记录系统上托管的系统、安全性和应用程序的事件,事件日志提供包含有关事件的详细信息,包括日期、时间、事件 ID、源、事件类型和发起它的用户。…

拭目以待!万博智云亮相2023长沙·中国1024程序员节

2023年10月23 - 25日,第四届“长沙中国 1024 程序员节”将在中国长沙盛大举行,万博智云 OneProCloud将以大会钻石合作伙伴身份重磅亮相,CEO Michael将发表主题演讲。这也是万博智云首次成为长沙中国 1024 程序员节合作伙伴。 1.主题演讲 万博…

Qt/C++开源作品45-CPU内存显示控件/和任务管理器一致

一、前言 在很多软件上,会在某个部位显示一个部件,专门显示当前的CPU使用率以及内存占用,方便用户判断当前程序或者当前环境中是否还有剩余的CPU和内存留给程序使用,在不用打开任务管理器或者资源查看器的时候直接得知当前系统的…

求最大公约数的几种常见的方法 【详解】

目录 一、关于公约数 二、计算最大公约数的方法 1. 辗转相除法(欧几里得算法) 2. 更相减损法(辗转相减法) 3. 分解质因数法 4. 穷举法 5. 递归法 6. 短除法 三、总结 一、关于公约数 首先 ,先介绍一下公约…

SVN一直报错Error running context: 由于目标计算机积极拒绝,无法连接。解决办法【杭州多测师_王sir】...

一、发现SVN一直报错Error running context: 由于目标计算机积极拒绝,无法连接。 二、没有启动 VisualSVN Server。cmd--> services.msc打开本地服务。查看VisualSVN的三个服务的启动类型,建议选择“手动”,不能选择“禁用”,选…

C++设计模式_09_Abstract Factory 抽象工厂

与上篇介绍的Factory Method工厂方法模式一样,Abstract Factory 抽象工厂模式也属于典型的“对象创建模式”模式,解决的问题也极其相似,在理解了Factory Method工厂方法模式的基础上再去理解Abstract Factory 抽象工厂模式就会变得更加容易。…

docker容器健康状态健康脚本

代码: #!/bin/bash# 定义要监控的容器名称 container_name"mysql-container"# 使用Docker命令来检查容器的运行状态 container_status$(docker inspect --format"{{.State.Status}}" "$container_name")# 检查容器状态并进行相应操作…

uniapp实现简单的九宫格抽奖(附源码)

效果展示 uniapp实现大转盘抽奖 实现步骤: 1.该页面可设置8个奖品,每个奖品可设置中奖机会的权重,如下chance越大,中奖概率越高(大于0) // 示例代码 prizeList: [{id: 1,image: "https://img.alicdn…

如何注册微信小程序

如何注册微信小程序 前言 因为最近沉迷和朋友们一起下班去打麻将,他们推荐了一个计分的小程序,就不需要每局都转账或者用扑克牌记录了,但是这个小程序不仅打开有广告,各个页面都植入了广告,用起来十分不适。 于是我…

【Cisco】解决小米手机无法连接WIFI的问题

问题来源:领导的小米Note7旧手机无法连接到公司的wifi上,确定密码什么的都没有问题。 无线环境: Cisco Catalyst 9800-L Wireless Controller Cisco Catalyst 9115 AP 可能原因:可能是Cisco 9100系列 AP 和 Android 10设备&#…

eNSP-OSPF协议其他区域不与骨干区域相连解决方法1

OSPF多进程路由重分布 AR1 [ar1]int g0/0/0 [ar1-GigabitEthernet0/0/0]ip add 192.168.1.1 24 [ar1-GigabitEthernet0/0/0]quit [ar1]ospf [ar1-ospf-1]area 0 [ar1-ospf-1-area-0.0.0.0]net 192.168.1.0 0.0.0.255 [ar1-ospf-1-area-0.0.0.0]quit AR2 [ar2]int g0/0/0 [ar2…

微服务docker部署实战

docker基础和进阶(*已掌握的可以跳过 *) 基础 docker基础 进阶 docker进阶 准备工作 提前准备好mysql和redis的配置,如下 在/zzq/mysql/conf目录下配置mysql配置文件my.cnf [client] #设置客户端字符集 default_character_setutf8 [mysqld] #开启定时任务 event_s…

微信小程序4

一自定义组件应用 1.介绍 微信小程序自定义组件是指开发者可以自定义组件,将一些常用的 UI 元素封装成一个自定义组件,然后在多个页面中复用该组件,实现代码复用和页面性能优化的效果。 2.自定义组件分为两种类型 组件模板类型:…

【14】基础知识:React - redux

一、 redux理解 1、学习文档 英文文档:https://redux.js.org/ 中文文档:http://www.redux.org.cn/ Github: https://github.com/reactjs/redux 2、redux是什么 redux 是一个专门用于做状态管理的 JS 库(不是 react 插件库)。 它可以用在 react&am…

求助C语言大佬:C语言的main函数参数问题

最近在敲代码的过程中,突发奇想,产生了一个疑问: 为什么main函数可以任由我们定义:可以接收一个参数、两个参数、三个参数都接接收,或者可以不接收?这是如何实现的 int main(){retrun 0; } int main (int…

怎么使用LightPicture开源搭建图片管理系统并远程访问?【搭建私人图床】

文章目录 1.前言2. Lightpicture网站搭建2.1. Lightpicture下载和安装2.2. Lightpicture网页测试2.3.cpolar的安装和注册 3.本地网页发布3.1.Cpolar云端设置3.2.Cpolar本地设置 4.公网访问测试5.结语 1.前言 现在的手机越来越先进,功能也越来越多,而手机…

TSINGSEE智慧港口可视化智能监管解决方案,助力港口码头高效监管

一、方案背景 全球经济一体化进程以及国际市场的不断融合,使得港口码头成为了大型货运周转中心,每天数以百计的大型货轮、数以千计的大型集装箱、数以万计的人员流动。港口作为货物、集装箱堆放及中转机构,具有昼夜不歇、天气多变、环境恶劣…

rust学习—— 控制流if 表达式

控制流 根据条件是否为真来决定是否执行某些代码,或根据条件是否为真来重复运行一段代码,是大部分编程语言的基本组成部分。Rust 代码中最常见的用来控制执行流的结构是 if 表达式和循环。 if 表达式 if 表达式允许根据条件执行不同的代码分支。你提供…

c: Queue Calling in Ubuntu

/*** file TakeNumber.h* author your name (geovindu)* brief * version 0.1* date 2023-10-20* * copyright Copyright (c) 2023 站在巨人的肩膀上 Standing on the Shoulders of Giants* */#ifndef TAKENUMBER_H #define TAKENUMBER_H#include <stdio.h> #include <…

nginx 内存管理(一)

文章目录 前提知识nginx内存管理的基础内存分配不初始化封装malloc初始化malloc 内存池内存池结构清理函数cleanup大块内存large 创建内存池申请内存void *ngx_palloc(ngx_pool_t *pool, size_t size)void *ngx_pnalloc(ngx_pool_t *pool, size_t size)void *ngx_pcalloc(ngx_p…