《动手学深度学习 Pytorch版》 9.2 长短期记忆网络(LSTM)

解决隐变量模型长期信息保存和短期输入缺失问题的最早方法之一是长短期存储器(long short-term memory,LSTM)。它与门控循环单元有许多一样的属性。长短期记忆网络的设计比门控循环单元稍微复杂一些,却比门控循环单元早诞生了近 20 年。

9.2.1 门控记忆元

为了记录附加的信息,长短期记忆网络引入了与隐状态具有相同的形状的记忆元(memory cell),或简称为单元(cell)。

为了控制记忆元又需要引入许多门:

  • 输出门(output gate):用来从单元中输出条目,决定是不是使用隐藏状态。

  • 输入门(input gate):用来决定何时将数据读入单元,决定是不是忽略掉输入数据。

  • 遗忘门(forget gate):用来重置单元的内容,将值朝 0 减少。

这种设计的动机与门控循环单元相同, 能够通过专用机制决定什么时候记忆或忽略隐状态中的输入。

9.2.1.1 输入门、遗忘门和输出门

特征:

  • 以当前时间步的输入和前一个时间步的隐状态为数据送入长短期记忆网络的门

  • 由三个具有 sigmoid 激活函数的全连接层计算输入门、遗忘门和输出门的值

  • 值都在的 ( 0 , 1 ) (0,1) (0,1) 范围内

在这里插入图片描述

它们的计算方法如下:

I t = σ ( X t W x i + H t − 1 W h i + b i ) F t = σ ( X t W x f + H t − 1 W h f + b f ) O t = σ ( X t W x o + H t − 1 W h o + b o ) \begin{align} \boldsymbol{I}_t&=\sigma(\boldsymbol{X}_t\boldsymbol{W}_{xi}+\boldsymbol{H}_{t-1}\boldsymbol{W}_{hi}+b_i)\\ \boldsymbol{F}_t&=\sigma(\boldsymbol{X}_t\boldsymbol{W}_{xf}+\boldsymbol{H}_{t-1}\boldsymbol{W}_{hf}+b_f)\\ \boldsymbol{O}_t&=\sigma(\boldsymbol{X}_t\boldsymbol{W}_{xo}+\boldsymbol{H}_{t-1}\boldsymbol{W}_{ho}+b_o) \end{align} ItFtOt=σ(XtWxi+Ht1Whi+bi)=σ(XtWxf+Ht1Whf+bf)=σ(XtWxo+Ht1Who+bo)

参数列表:

  • X t ∈ R n × d \boldsymbol{X}_t\in\R^{n\times d} XtRn×d 表示小批量输入

    • n n n 表示批量大小

    • d d d 表示输入个数

  • H t − 1 ∈ R n × h \boldsymbol{H}_{t-1}\in\R^{n\times h} Ht1Rn×h 表示上一个时间步的隐状态

    • h h h 表示隐藏单元个数
  • I t ∈ R n × h \boldsymbol{I}_t\in\R^{n\times h} ItRn×h 表示输入门

  • F t ∈ R n × h \boldsymbol{F}_t\in\R^{n\times h} FtRn×h 表示遗忘门

  • O t ∈ R n × h \boldsymbol{O}_t\in\R^{n\times h} OtRn×h 表示输出门

  • W x i , W x f , W x o ∈ R d × h \boldsymbol{W}_{xi},\boldsymbol{W}_{xf},\boldsymbol{W}_{xo}\in\R^{d\times h} Wxi,Wxf,WxoRd×h W h i , W h f , W h o ∈ R h × h \boldsymbol{W}_{hi},\boldsymbol{W}_{hf},\boldsymbol{W}_{ho}\in\R^{h\times h} Whi,Whf,WhoRh×h 表示权重参数

  • b i , b f , b o ∈ R 1 × h b_i,b_f,b_o\in\R^{1\times h} bi,bf,boR1×h 表示偏重参数

9.2.1.2 候选记忆单元

候选记忆元(candidate memory cell) C t ~ ∈ R n × h \tilde{\boldsymbol{C}_t}\in\R^{n\times h} Ct~Rn×h 的计算与上面描述的三个门的计算类似,但是使用 tanh 函数作为激活函数,函数的值范围为 ( 0 , 1 ) (0,1) (0,1)

在这里插入图片描述

它的计算方式如下:

C t ~ = t a n h ( X t W x c + H t − 1 W h c + b c ) \tilde{\boldsymbol{C}_t}=tanh(\boldsymbol{X}_t\boldsymbol{W}_{xc}+\boldsymbol{H}_{t-1}\boldsymbol{W}_{hc}+\boldsymbol{b}_c) Ct~=tanh(XtWxc+Ht1Whc+bc)

参数列表:

  • W x c ∈ R d × h \boldsymbol{W}_{xc}\in\R^{d\times h} WxcRd×h W h c ∈ R h × h \boldsymbol{W}_{hc}\in\R^{h\times h} WhcRh×h 表示权重参数

  • b c ∈ R 1 × h \boldsymbol{b}_c\in\R^{1\times h} bcR1×h 表示偏置参数

9.2.1.3 记忆元

  • 输入门 I t I_t It 控制采用多少来自 C t ~ \tilde{\boldsymbol{C}_t} Ct~ 的新数据

  • 遗忘门 F t F_t Ft 控制保留多少过去的记忆元 C t − 1 ∈ R n × h \boldsymbol{C}_{t-1}\in\R^{n\times h} Ct1Rn×h 的内容。

计算方法:

C t = F t ⊙ C t − 1 + I t ⊙ C t ~ \boldsymbol{C}_t=\boldsymbol{F}_t\odot\boldsymbol{C}_{t-1}+\boldsymbol{I}_t\odot\tilde{\boldsymbol{C}_t} Ct=FtCt1+ItCt~

如果遗忘门始终为 1 且输入门始终为 0,则过去的记忆元 C t − 1 \boldsymbol{C}_{t-1} Ct1 将随时间被保存并传递到当前时间步。

引入这种设计是为了:

  • 缓解梯度消失问题

  • 更好地捕获序列中的长距离依赖关系。

    在这里插入图片描述

9.2.1.4 隐状态

计算隐状态 H t ∈ R n × h \boldsymbol{H}_t\in\R^{n\times h} HtRn×h 是输出门发挥作用的地方。实际上它仅仅是记忆元的 tanh 的门控版本。 这就确保了 H t \boldsymbol{H}_t Ht 的值始终在区间 ( − 1 , 1 ) (-1,1) (1,1)内:

H t = O t ⊙ t a n h ( C t ) \boldsymbol{H}_t=\boldsymbol{O}_t\odot tanh(\boldsymbol{C}_t) Ht=Ottanh(Ct)

只要输出门接近 1,我们就能够有效地将所有记忆信息传递给预测部分,而对于输出门接近 0,我们只保留记忆元内的所有信息,而不需要更新隐状态。

在这里插入图片描述

9.2.2 从零开始实现

import torch
from torch import nn
from d2l import torch as d2l
batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)

9.2.2.1 初始化模型参数

def get_lstm_params(vocab_size, num_hiddens, device):num_inputs = num_outputs = vocab_sizedef normal(shape):return torch.randn(size=shape, device=device)*0.01def three():return (normal((num_inputs, num_hiddens)),normal((num_hiddens, num_hiddens)),torch.zeros(num_hiddens, device=device))W_xi, W_hi, b_i = three()  # 输入门参数W_xf, W_hf, b_f = three()  # 遗忘门参数W_xo, W_ho, b_o = three()  # 输出门参数W_xc, W_hc, b_c = three()  # 候选记忆元参数# 输出层参数W_hq = normal((num_hiddens, num_outputs))b_q = torch.zeros(num_outputs, device=device)# 附加梯度params = [W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc,b_c, W_hq, b_q]for param in params:param.requires_grad_(True)return params

9.2.2.2 定义模型

def init_lstm_state(batch_size, num_hiddens, device):return (torch.zeros((batch_size, num_hiddens), device=device),  # 隐状态需要返回一个额外的单元的值为0形状为(批量大小,隐藏单元数)记忆元torch.zeros((batch_size, num_hiddens), device=device))
def lstm(inputs, state, params):[W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c,W_hq, b_q] = params(H, C) = stateoutputs = []for X in inputs:I = torch.sigmoid((X @ W_xi) + (H @ W_hi) + b_i)  # 输入门运算F = torch.sigmoid((X @ W_xf) + (H @ W_hf) + b_f)  # 遗忘门运算O = torch.sigmoid((X @ W_xo) + (H @ W_ho) + b_o)  # 输出门运算C_tilda = torch.tanh((X @ W_xc) + (H @ W_hc) + b_c)  # 候选记忆元运算C = F * C + I * C_tilda  # 记忆元计算H = O * torch.tanh(C)  # 隐状态计算Y = (H @ W_hq) + b_q  # 输出计算outputs.append(Y)return torch.cat(outputs, dim=0), (H, C)

9.2.2.3 训练与预测

vocab_size, num_hiddens, device = len(vocab), 256, d2l.try_gpu()
num_epochs, lr = 500, 1
model = d2l.RNNModelScratch(len(vocab), num_hiddens, device, get_lstm_params,init_lstm_state, lstm)
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)
perplexity 1.1, 28093.3 tokens/sec on cuda:0
time traveller well pnatter ats sho in the geet on the battle of
traveller oft chat in all dore think of mowh of stace assio

在这里插入图片描述

9.2.3 简洁实现

num_inputs = vocab_size
lstm_layer = nn.LSTM(num_inputs, num_hiddens)
model = d2l.RNNModel(lstm_layer, len(vocab))
model = model.to(device)
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)
perplexity 1.0, 171500.8 tokens/sec on cuda:0
time travelleryou can show black is white by argument said filby
travelleryou can show black is white by argument said filby

在这里插入图片描述

练习

(1)调整和分析超参数对运行时间、困惑度和输出顺序的影响。

跟上一节类似,五个参数轮着换。

def test(Hyperparameters):  # [batch_size, num_steps, num_hiddens, lr, num_epochs]train_iter_now, vocab_now = d2l.load_data_time_machine(Hyperparameters[0], Hyperparameters[1])lstm_layer_now = nn.LSTM(len(vocab_now), Hyperparameters[2])model_now = d2l.RNNModel(lstm_layer_now, len(vocab_now))model_now = model_now.to(d2l.try_gpu())d2l.train_ch8(model_now, train_iter_now, vocab_now, Hyperparameters[3], Hyperparameters[4], d2l.try_gpu())Hyperparameters_lists = [[64, 35, 256, 1, 500],  # 加批量大小[32, 64, 256, 1, 500],  # 加时间步[32, 35, 512, 1, 500],  # 加隐藏单元数[32, 35, 256, 0.5, 500],  # 减半学习率[32, 35, 256, 1, 200]  # 减轮数
]for Hyperparameters in Hyperparameters_lists:test(Hyperparameters)
perplexity 4.3, 164389.7 tokens/sec on cuda:0
time traveller the the that the grome that he a thee tho ghith o
traveller the that that that this that the go that have the

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述


(2)如何更改模型以生成适当的单词,而不是字符序列?

浅浅的改了一下预测函数和训练函数。

def predict_ch8_word(prefix, num_preds, net, vocab, device):  # 词预测"""在prefix后面生成新字符"""state = net.begin_state(batch_size=1, device=device)outputs = [vocab[prefix[0]]]  # 调用 vocab 类的 __getitem__ 方法get_input = lambda: torch.tensor([outputs[-1]], device=device).reshape((1, 1))  # 把预测结果(结果的最后一个)作为下一个的输入for y in prefix[1:]:  # 预热期 把前缀先载进模型_, state = net(get_input(), state)outputs.append(vocab[y])for _ in range(num_preds):  # 预测 num_preds 步y, state = net(get_input(), state)outputs.append(int(y.argmax(dim=1).reshape(1)))  # 优雅return ''.join([vocab.idx_to_token[i] + ' ' for i in outputs])  # 加个空格分隔各词def train_ch8_word(net, train_iter, vocab, lr, num_epochs, device,  # 词训练use_random_iter=False):loss = nn.CrossEntropyLoss()animator = d2l.Animator(xlabel='epoch', ylabel='perplexity',legend=['train'], xlim=[10, num_epochs])# 初始化if isinstance(net, nn.Module):updater = torch.optim.SGD(net.parameters(), lr)else:updater = lambda batch_size: d2l.sgd(net.params, lr, batch_size)predict = lambda prefix: predict_ch8_word(prefix, 50, net, vocab, device)# 训练和预测for epoch in range(num_epochs):ppl, speed = d2l.train_epoch_ch8(net, train_iter, loss, updater, device, use_random_iter)if (epoch + 1) % 10 == 0:print(predict(['time', 'traveller']))  # 使用 word 而非 charanimator.add(epoch + 1, [ppl])print(f'困惑度 {ppl:.1f}, {speed:.1f} 词元/秒 {str(device)}')print(predict(['time', 'traveller']))print(predict(['traveller']))class SeqDataLoader_word:  # 词加载器def __init__(self, batch_size, num_steps, use_random_iter, max_tokens):if use_random_iter:self.data_iter_fn = d2l.seq_data_iter_randomelse:self.data_iter_fn = d2l.seq_data_iter_sequentiallines = d2l.read_time_machine()tokens = d2l.tokenize(lines, token='word')  # 使用 word 而非 charself.vocab_word = d2l.Vocab(tokens)  # 构建 word 词表self.corpus_word = [self.vocab_word[token] for line in tokens for token in line]if max_tokens > 0:self.corpus_word = self.corpus_word[:max_tokens]self.batch_size, self.num_steps = batch_size, num_stepsdef __iter__(self):return self.data_iter_fn(self.corpus_word, self.batch_size, self.num_steps)train_iter_word = SeqDataLoader_word(64, 35, False, 10000)
vocab_word = train_iter_word.vocab_wordlstm_layer_word = nn.LSTM(len(vocab_word), 256)
model_word = d2l.RNNModel(lstm_layer_word, len(vocab_word))
model_word = model_word.to(d2l.try_gpu())
train_ch8_word(model_word, train_iter_word, vocab_word, 1.5, 1000, d2l.try_gpu())
困惑度 1.7, 40165.1 词元/秒 cuda:0
time traveller s his hand at last to me that with his own to the psychologist with his grew which i had said filby time travelling yes said the time traveller with his mouth full nodding his head i d give a shilling a line for a verbatim note said the editor 
traveller and i was so the sun in my marble smote to the world for for the long pressed he was the little of the sun and presently for a certain heap of cushions and robes i saw on the sun in my confident anticipations it seemed a large figure of 

在这里插入图片描述


(3)在给定隐藏层维度的情况下,比较门控循环单元、长短期记忆网络和常规循环神经网络的计算成本。要特别注意训练和推断成本。

咋好像每个都差不多。

batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)num_inputs = len(vocab)
device = d2l.try_gpu()
num_hiddens = 256
num_epochs, lr = 500, 1
rnn_layer = nn.RNN(len(vocab), num_hiddens)
model_RNN = d2l.RNNModel(rnn_layer, vocab_size=len(vocab))
model_RNN = model_RNN.to(device)
d2l.train_ch8(model_RNN, train_iter, vocab, lr, num_epochs, device)  # 34.3s
perplexity 1.3, 218374.6 tokens/sec on cuda:0
time travelleryou can show black is whith basimat very hu and le
travellerit so drawly us our dimsas absulladt nt havi gerea

在这里插入图片描述

gru_layer = nn.GRU(num_inputs, num_hiddens)
model_GRU = d2l.RNNModel(gru_layer, len(vocab))
model_GRU = model_GRU.to(device)
d2l.train_ch8(model_GRU, train_iter, vocab, lr, num_epochs, device)  # 35.1s
perplexity 1.0, 199203.7 tokens/sec on cuda:0
time travelleryou can show black is white by argument said filby
travelleryou can show black is white by argument said filby

在这里插入图片描述

lstm_layer = nn.LSTM(num_inputs, num_hiddens)
model_LSTM = d2l.RNNModel(lstm_layer, len(vocab))
model_LSTM = model_LSTM.to(device)
d2l.train_ch8(model_LSTM, train_iter, vocab, lr, num_epochs, device)  # 35.4s
perplexity 1.0, 199069.6 tokens/sec on cuda:0
time travelleryou can show black is white by argument said filby
travelleryou can show black is white by argument said filby

在这里插入图片描述


(4)既然候选记忆元通过使用 tanh 函数来确保值范围在 ( − 1 , 1 ) (-1,1) (1,1) 之间,那么为什么隐状态需要再次使用 tanh 函数来确保输出值范围在 (-1,1) 之间呢?

候选记忆元和隐状态之间还有个记忆元呐,这个: C t = F t ⊙ C t − 1 + I t ⊙ C t ~ \boldsymbol{C}_t=\boldsymbol{F}_t\odot\boldsymbol{C}_{t-1}+\boldsymbol{I}_t\odot\tilde{\boldsymbol{C}_t} Ct=FtCt1+ItCt~

很有可能出范围的。


(5)实现一个能够基于时间序列进行预测而不是基于字符序列进行预测的长短期记忆网络模型。

不会,略。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/110518.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【算法|前缀和系列No.5】leetcode1314. 矩阵区域和

个人主页:兜里有颗棉花糖 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 兜里有颗棉花糖 原创 收录于专栏【手撕算法系列专栏】【Leetcode】 🍔本专栏旨在提高自己算法能力的同时,记录一下自己的学习过程,希望…

ifndef是什么,如何使用?

引言 使用HbuilderX uni-ui模板创建的uni-app项目,main.js文件中看到有如下的注释: // #ifndef VUE3 ...... // #endif // #ifdef VUE3 ...... // #endif 相信很多没有uini-app项目开发经验的朋友,初次接触uni-app项目,可…

小白学习c++的的一节课

初识c 目录:一、c关键字(c98)二、命名空间2.1 命名空间的定义2.2 命名空间的使用 三、c输入与输出四、缺省参数五、函数重载六、引用6.1引用特性6.2常引用6.3使用场景6.4传值和传引用效率比较6.5引用和指针的区别 七、内联函数7.1 概念7.2特性 八、auto关键字&…

ios 实现TEXT、DOC、PDF等文档读取与预览

文章目录 一、前言二、iCould相关配置三、功能实现3.1 UIDocumentPickerViewController 选取控制器3.2 读取文件3.3 文档预览3.3.1 下载并保存3.3.1 QLPreviewController预览文档四、总结一、前言 最近正在研发的项目有一个需求: 允许用户将iCloud中的文档上传,实现文件的流…

Linux高性能服务器编程——ch4笔记

第4章 TCP/IP 通信案例:访问 Internet 上的Web 服务器 4.1 实例总图 4.2 部署代理服务器 客户端和目标服务器之间可能存在多个代理服务器。 正向代理:要求客户端自己设置代理服务器的地址。 反向代理:设置在服务器端。 透明代理&#xff1…

List.of() 与 Arrays.asList()总结

List.of() 与 Arrays.asList() 是 Java 中用于创建列表的两种不同方法。虽然它们都用于创建包含一组元素的列表对象,但它们在实现、不可变性、适用场景和一些细节上存在重要差异。本文将详细分析这两种方法,讨论它们的异同点以及在什么情况下使用它们。 …

“react“: “^16.14.0“,打开弹窗数据发生变化

“react”: “^16.14.0”, 弹窗 打开弹窗数据发生变化 // 这里对比changeHistoryVisible是否发生改变调用后端方法改变数据componentDidUpdate(prevProps) {if (prevProps.changeHistoryVisible ! this.props.changeHistoryVisible && this.props.changeHistoryVisi…

智慧公厕改变城市生活,厕所革命标杆应用解决方案

随着城市化进程的加快,公厕作为城市基础设施的重要组成部分,扮演着不可忽视的角色。然而,传统的公厕粗放型管理模式,已经无法满足市民日益增长的需求。为了提升公厕的管理和服务水平,智慧公厕应运而生。 什么是智慧公…

多模态大模型NextGPT整体结构图、模型示意图和使用模型时示意图

NextGPT模型整体结构 项目地址 论文地址 模型示意图 使用模型时示意图

第二证券:RTX 4090显卡全面下架,芯片巨头连续两日大跌!

英伟达RTX 4090显卡全面下架 在拜登政府更新针对人工智能(AI)芯片的出口控制规矩后的次日,英伟达RTX4090显卡已在各大购物网站下架。现在,网购途径京东上13款RTX 4090显卡均闪现“该产品已下柜”或“此产品暂时售完”&#xff0c…

PlatformIO在clion和vscode上的开发和使用,机器人开发嵌入式代码

vscode PlatformIO:2020年你还在用Arduino??快开始用PlatformIO开发Esp8266/32、Arduino、STM32,十分钟亲测ESP8266 clion PlatformIO: clion platformio搭建 其他说明: 在vscode里使用platformio,可以选择开发的平台…

【Axure高保真原型】3D柱状图_中继器版

今天和大家分享3D柱状图_中继器版的原型模板,图表在中继器表格里填写具体的数据,调整坐标系后,就可以根据表格数据自动生成对应高度的柱状图,鼠标移入时,可以查看对应圆柱体的数据……具体效果可以打开下方原型地址体验…

尝试使用jmeter-maven-plugin

前提准备 1、maven项目 2、已安装JMeter、Jenkins、maven、jdk 环境要求: jmeter>5.6.2 maven >3.9 jdk>1.8 Jenkins ? 备注:jmeter-maven-plugin 无需下载,可查阅相关地址:GitHub - jmeter-maven-plugin/jmete…

教程更新 | 持续开源 RK3568驱动指南-驱动基础进阶篇

《iTOP-RK3568开发板驱动开发指南》手册文档更新,手册内容对应视频教程,后续资料会不断更新,不断完善,帮助用户快速入门,大大提升研发速度。 ✦ 第一篇 驱动基础 第1章 前言 第2章 你好!内核源码 第3章 …

PXIE板卡,4口QSFP+,PCIE GEN3 X8,XILINX FPGA XCVU3P设计

PXIE板卡,4口QSFP,PCIE GEN3 X8,基于XILINX FPGA XCVU3P设计。 1:电路拓扑 ● 支持利用 EEPROM 存储数据; ● 电源时序控制和总功耗监控; 2:电路调试 3:测试 PCIE gen3 x8&#…

【音视频|ALSA】基于alsa-lib开发ALSA应用层程序--附带源码

😁博客主页😁:🚀https://blog.csdn.net/wkd_007🚀 🤑博客内容🤑:🍭嵌入式开发、Linux、C语言、C、数据结构、音视频🍭 🤣本文内容🤣&a…

Linux下等待队列、定时器、中断综合应用——按键控制LED

本文通过按键控制LED的亮灭,按键每按一次,LED的状态就发生一次变化。 等待队列是为了在按键有动作发生时再读取按键值,而不是一直读取按键的值,使得CPU的占用率很高。 定时器在本实验中引入是为了按键消抖,在键值稳定了…

(Python)MATLAB mat矩阵和Python npy矩阵转换

Python np.ndarray矩阵转换为MATLAB mat文件 import numpy as npimport scipy.io as iomat_path mat_save_pathmat np.zeros([6, 128])io.savemat(mat_path, {name: mat})Python读取MATLAB mat文件 import numpy as np from scipy import iomat io.loadmat(your_mat_file.…

Linux——基础指令

Linux基础指令 ls 语法:ls【语法】【目录或文件】: 功能:对于目录,直接列出目录下所有文件。对于文件,列出文件名和其他信息 -a:列出目录下所有文件文件,包括隐藏文件-d:将目录像…

【前端设计模式】之建造者模式

建造者模式是一种创建型设计模式,它允许你按照特定的步骤构建复杂对象。该模式将对象的构造过程与其表示分离,使得同样的构造过程可以创建不同的表示。 建造者模式特性 将复杂对象的构建过程分解为多个简单步骤,使得代码更加可读、可维护。…