《动手学深度学习 Pytorch版》 9.1 门控循环单元(GRU)

我们可能会遇到这样的情况:

  • 早期观测值对预测所有未来观测值具有非常重要的意义。

    考虑一个极端情况,其中第一个观测值包含一个校验和,目标是在序列的末尾辨别校验和是否正确。在这种情况下,第一个词元的影响至关重要。我们希望有某些机制能够在一个记忆元里存储重要的早期信息。如果没有这样的机制,我们将不得不给这个观测值指定一个非常大的梯度, 因为它会影响所有后续的观测值。

  • 一些词元没有相关的观测值。

    例如,在对网页内容进行情感分析时, 可能有一些辅助HTML代码与网页传达的情绪无关。 我们希望有一些机制来跳过隐状态表示中的此类词元。

  • 序列的各个部分之间存在逻辑中断。

    例如,书的章节之间可能会有过渡存在, 或者证券的熊市和牛市之间可能会有过渡存在。 在这种情况下,最好有一种方法来重置我们的内部状态表示。

在学术界已经提出了许多方法来解决这类问题。其中最早的方法是“长短期记忆”(long-short-term memory,LSTM),将在 9.2节中讨论。门控循环单元(gated recurrent unit,GRU)是一个稍微简化的变体,通常能够提供同等的效果,并且计算的速度明显更快。由于门控循环单元更简单,我们从它开始解读。

9.1.1 门控隐状态

9.1.1.1 重置门和更新门

  • 重置门(reset gate):控制“可能还想记住”的过去状态的数量,也就是控制旧状态的影响。

  • 更新门(update gate):控制新状态中有多少个是旧状态的副本,也就是控制新状态的影响。

要点:

  • 两个门是 ( 0 , 1 ) (0,1) (0,1) 区间中的向量,这样就可以进行凸组合。

  • 输入由当前时间步的输入和前一时间步的隐状态给出

  • 输出由使用sigmoid激活函数的两个全连接层给出

在这里插入图片描述

门控循环单元的数学表达如下:

R t = σ ( X t W x r + H t − 1 W h r + b r ) Z t = σ ( X t W x z + H t − 1 W h z + b z ) \begin{align} \boldsymbol{R}_t&=\sigma(\boldsymbol{X}_t\boldsymbol{W}_{xr}+\boldsymbol{H}_{t-1}\boldsymbol{W}_{hr}+b_r)\\ \boldsymbol{Z}_t&=\sigma(\boldsymbol{X}_t\boldsymbol{W}_{xz}+\boldsymbol{H}_{t-1}\boldsymbol{W}_{hz}+b_z)\\ \end{align} RtZt=σ(XtWxr+Ht1Whr+br)=σ(XtWxz+Ht1Whz+bz)

参数字典:

  • X t ∈ R n × d \boldsymbol{X}_t\in\R^{n\times d} XtRn×d 表示小批量输入

    • n n n 表示样本个数

    • n n n 表示输入个数

  • H t − 1 ∈ R n × h \boldsymbol{H}_{t-1}\in\R^{n\times h} Ht1Rn×h 表示上一个时间步的隐状态

    • h h h 表示隐藏单元个数
  • R t ∈ R n × h \boldsymbol{R}_t\in\R^{n\times h} RtRn×h 表示重置门

  • Z t ∈ R n × h \boldsymbol{Z}_t\in\R^{n\times h} ZtRn×h 表示更新门

  • W x r , W x z ∈ R d × h \boldsymbol{W}_{xr},\boldsymbol{W}_{xz}\in\R^{d\times h} Wxr,WxzRd×h W h r , W h z ∈ R h × h \boldsymbol{W}_{hr},\boldsymbol{W}_{hz}\in\R^{h\times h} Whr,WhzRh×h 表示权重参数

  • b r , b z ∈ R 1 × h b_r,b_z\in\R^{1\times h} br,bzR1×h 表示偏重参数

在求和过程中会触发广播机制。使用 sigmoid 函数将输入值转换到区间 ( 0 , 1 ) (0,1) (0,1)

9.1.1.2 候选隐状态

将重置门 R t R_t Rt 与常规隐状态更新机制集成,得到在时间步 t t t 的候选隐状态(candidate hidden state) H t ~ ∈ R n × h \tilde{\boldsymbol{H}_t}\in\R^{n\times h} Ht~Rn×h

H t ~ = t a n h ( X t W x h + ( R t ⊙ H t − 1 ) W h h + b h ) \tilde{\boldsymbol{H}_t}=tanh(\boldsymbol{X}_t\boldsymbol{W}_{xh}+(\boldsymbol{R}_t\odot\boldsymbol{H}_{t-1})\boldsymbol{W}_{hh}+\boldsymbol{b}_h) Ht~=tanh(XtWxh+(RtHt1)Whh+bh)

与常规隐状态更新机制公式相比, R t \boldsymbol{R}_t Rt H t − 1 \boldsymbol{H}_{t-1} Ht1 的元素相乘可以减少以往状态的影响。

  • 当重置门 R t R_t Rt 中的项接近 1 时,就恢复一个如常规隐状态更新机制公式中的普通的循环神经网络。

  • 对于重置门 R t R_t Rt 中所有接近 0 的项,候选隐状态是以 X t X_t Xt 作为输入的多层感知机的结果。因此,任何预先存在的隐状态都会被重置为默认值。

在这里插入图片描述

9.1.1.3 隐状态

上述的计算结果只是候选隐状态,接下来仍然需要结合更新门的效果。这一步确定新的隐状态 H t ∈ R n × h \boldsymbol{H}_t\in\R^{n\times h} HtRn×h 在多大程度上来自旧的状态 H t − 1 \boldsymbol{H}_{t-1} Ht1 和新的候选状态 H t ~ \tilde{\boldsymbol{H}_t} Ht~。更新门 Z t \boldsymbol{Z}_t Zt 仅需要在 H t − 1 \boldsymbol{H}_{t-1} Ht1 H t ~ \tilde{\boldsymbol{H}_t} Ht~ 之间进行按元素的凸组合就可以实现这个目标。这就得出了门控循环单元的最终更新公式:

H t = Z t ⊙ H t − 1 + ( 1 − Z t ) ⊙ H t ~ \boldsymbol{H}_t=\boldsymbol{Z}_t\odot\boldsymbol{H}_{t-1}+(1-\boldsymbol{Z}_t)\odot\tilde{\boldsymbol{H}_t} Ht=ZtHt1+(1Zt)Ht~

  • 每当更新门 Z t Z_t Zt 接近 1 时,模型就倾向只保留旧状态。此时,来自 X t X_t Xt 的信息基本上被忽略,从而有效地跳过了依赖链条中的时间步。

  • Z t Z_t Zt 接近 0 时,新的隐状态 H t H_t Ht 就会接近候选隐状态 H t ~ \tilde{\boldsymbol{H}_t} Ht~

这些设计可以帮助我们处理循环神经网络中的梯度消失问题,并更好地捕获时间步距离很长的序列的依赖关系。例如,如果整个子序列的所有时间步的更新门都接近于 1,则无论序列的长度如何,在序列起始时间步的旧隐状态都将很容易保留并传递到序列结束。

在这里插入图片描述

总之,门控循环单元具有以下两个显著特征:

  • 重置门有助于捕获序列中的短期依赖关系;

  • 更新门有助于捕获序列中的长期依赖关系。

9.1.2 从零开始实现

import torch
from torch import nn
from d2l import torch as d2l
batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)  # 读取时间机器数据集

9.1.2.1 初始化模型参数

def get_params(vocab_size, num_hiddens, device):  # 初始化模型参数num_inputs = num_outputs = vocab_sizedef normal(shape):return torch.randn(size=shape, device=device)*0.01def three():return (normal((num_inputs, num_hiddens)),normal((num_hiddens, num_hiddens)),torch.zeros(num_hiddens, device=device))W_xz, W_hz, b_z = three()  # 更新门参数W_xr, W_hr, b_r = three()  # 重置门参数W_xh, W_hh, b_h = three()  # 候选隐状态参数# 输出层参数W_hq = normal((num_hiddens, num_outputs))b_q = torch.zeros(num_outputs, device=device)# 附加梯度params = [W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q]for param in params:param.requires_grad_(True)return params

9.1.2.2 定义模型

def init_gru_state(batch_size, num_hiddens, device):  # 隐状态初始化return (torch.zeros((batch_size, num_hiddens), device=device), )
def gru(inputs, state, params):W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q = paramsH, = state  # 优雅,逗号解包outputs = []for X in inputs:Z = torch.sigmoid((X @ W_xz) + (H @ W_hz) + b_z)  # 更新门运算 @符号做哈达玛积R = torch.sigmoid((X @ W_xr) + (H @ W_hr) + b_r)  # 重置门运算H_tilda = torch.tanh((X @ W_xh) + ((R * H) @ W_hh) + b_h)  # 候选隐状态H = Z * H + (1 - Z) * H_tilda  # 隐状态计算Y = H @ W_hq + b_q  # 预测值计算outputs.append(Y)return torch.cat(outputs, dim=0), (H,)

9.1.2.3 训练预测

vocab_size, num_hiddens, device = len(vocab), 256, d2l.try_gpu()
num_epochs, lr = 500, 1
model = d2l.RNNModelScratch(len(vocab), num_hiddens, device, get_params,init_gru_state, gru)
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)
perplexity 1.0, 32229.1 tokens/sec on cuda:0
time travelleryou can show black is white by argument said filby
traveller with a slight accession ofcheerfulness really thi

在这里插入图片描述

9.1.3 简洁实现

num_inputs = vocab_size
gru_layer = nn.GRU(num_inputs, num_hiddens)
model = d2l.RNNModel(gru_layer, len(vocab))
model = model.to(device)
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)
perplexity 1.0, 182698.8 tokens/sec on cuda:0
time traveller with a slight accession ofcheerfulness really thi
travelleryou can show black is white by argument said filby

在这里插入图片描述

练习

(1)假设我们只想使用时间步 t ′ t' t 的输入来预测时间步 t > t ′ t>t' t>t 的输出。对于每个时间步,重置门和更新门的最佳值是什么?

不会。


(2)调整和分析超参数对运行时间、困惑度和输出顺序的影响。

分别修改各个参数试试、

def test(Hyperparameters):  # [batch_size, num_steps, num_hiddens, lr, num_epochs]train_iter_now, vocab_now = d2l.load_data_time_machine(Hyperparameters[0], Hyperparameters[1])gru_layer_now = nn.GRU(len(vocab_now), Hyperparameters[2])net_now = d2l.RNNModel(gru_layer_now, len(vocab_now))net_now = model.to(device)d2l.train_ch8(net_now, train_iter_now, vocab_now, Hyperparameters[3], Hyperparameters[4], d2l.try_gpu())Hyperparameters_lists = [[64, 35, 256, 1, 500],  # 加批量大小[32, 64, 256, 1, 500],  # 加时间步[32, 35, 512, 1, 500],  # 加隐藏单元数[32, 35, 256, 0.5, 500],  # 减半学习率[32, 35, 256, 1, 200]  # 减轮数
]for Hyperparameters in Hyperparameters_lists:test(Hyperparameters)
perplexity 1.0, 194760.4 tokens/sec on cuda:0
time traveller for so it will be convenient to speak of himwas e
travelleryou can show black is white by argument said filby

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述


(3)比较 rnn.RNN 和 rnn.GRU 的不同实现对运行时间、困惑度和输出字符串的影响。

batch_size2, num_steps2 = 32, 35
train_iter2, vocab2 = d2l.load_data_time_machine(batch_size2, num_steps2)vocab_size2, num_hiddens2, device = len(vocab2), 256, d2l.try_gpu()
num_epochs2, lr2 = 500, 1
num_inputs2 = vocab_size2
gru_layer2 = nn.GRU(num_inputs2, num_hiddens2)
net_GRU = d2l.RNNModel(gru_layer2, len(vocab2))
net_GRU = model.to(device)
d2l.train_ch8(net_GRU, train_iter2, vocab2, lr2, num_epochs2, device)
perplexity 1.0, 196633.4 tokens/sec on cuda:0
time traveller for so it will be convenient to speak of himwas e
traveller with a slight accession ofcheerfulness really thi

在这里插入图片描述

rnn_layer = nn.RNN(len(vocab2), num_hiddens2)
net_RNN = d2l.RNNModel(rnn_layer, vocab_size=len(vocab2))
net_RNN = net_RNN.to(device)
d2l.train_ch8(net_RNN, train_iter2, vocab2, lr2, num_epochs2, device)
perplexity 1.3, 190636.6 tokens/sec on cuda:0
time traveller held in his hand was a glitteringmetallic framewo
travellerisctallerasced fo the onther fite dok you know hom

在这里插入图片描述


(4)如果仅仅实现门控循环单元的一部分,例如,只有一个重置门或一个更新门会怎样?

去掉更新门根本不带收敛的;去掉重置门还行,甚至更平滑了。

# 删除更新门batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)def get_params_change1(vocab_size, num_hiddens, device):num_inputs = num_outputs = vocab_sizedef normal(shape):return torch.randn(size=shape, device=device)*0.01def three():return (normal((num_inputs, num_hiddens)),normal((num_hiddens, num_hiddens)),torch.zeros(num_hiddens, device=device))# W_xz, W_hz, b_z = three()W_xr, W_hr, b_r = three()W_xh, W_hh, b_h = three()W_hq = normal((num_hiddens, num_outputs))b_q = torch.zeros(num_outputs, device=device)# params = [W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q]params = [W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q]for param in params:param.requires_grad_(True)return paramsdef init_gru_state_change1(batch_size, num_hiddens, device):return (torch.zeros((batch_size, num_hiddens), device=device), )def gru_change1(inputs, state, params):# W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q = paramsW_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q = paramsH, = stateoutputs = []for X in inputs:# Z = torch.sigmoid((X @ W_xz) + (H @ W_hz) + b_z)R = torch.sigmoid((X @ W_xr) + (H @ W_hr) + b_r)H_tilda = torch.tanh((X @ W_xh) + ((R * H) @ W_hh) + b_h)# H = Z * H + (1 - Z) * H_tildaY = H_tilda @ W_hq + b_qoutputs.append(Y)return torch.cat(outputs, dim=0), (H,)vocab_size, num_hiddens, device = len(vocab), 256, d2l.try_gpu()
num_epochs, lr = 500, 1
model_change1 = d2l.RNNModelScratch(len(vocab), num_hiddens, device, get_params_change1,init_gru_state_change1, gru_change1)
d2l.train_ch8(model_change1, train_iter, vocab, lr, num_epochs, device)
perplexity 10.0, 45023.4 tokens/sec on cuda:0
time travellere the the the the the the the the the the the the 
travellere the the the the the the the the the the the the 

在这里插入图片描述

# 删除重置门batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)def get_params_change2(vocab_size, num_hiddens, device):num_inputs = num_outputs = vocab_sizedef normal(shape):return torch.randn(size=shape, device=device)*0.01def three():return (normal((num_inputs, num_hiddens)),normal((num_hiddens, num_hiddens)),torch.zeros(num_hiddens, device=device))W_xz, W_hz, b_z = three()# W_xr, W_hr, b_r = three()W_xh, W_hh, b_h = three()W_hq = normal((num_hiddens, num_outputs))b_q = torch.zeros(num_outputs, device=device)# params = [W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q]params = [W_xz, W_hz, b_z, W_xh, W_hh, b_h, W_hq, b_q]for param in params:param.requires_grad_(True)return paramsdef init_gru_state_change2(batch_size, num_hiddens, device):return (torch.zeros((batch_size, num_hiddens), device=device), )def gru_change2(inputs, state, params):# W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q = paramsW_xz, W_hz, b_z, W_xh, W_hh, b_h, W_hq, b_q = paramsH, = stateoutputs = []for X in inputs:Z = torch.sigmoid((X @ W_xz) + (H @ W_hz) + b_z)# R = torch.sigmoid((X @ W_xr) + (H @ W_hr) + b_r)# H_tilda = torch.tanh((X @ W_xh) + ((R * H) @ W_hh) + b_h)H_tilda = torch.tanh((X @ W_xh) + (H @ W_hh) + b_h)H = Z * H + (1 - Z) * H_tildaY = H_tilda @ W_hq + b_qoutputs.append(Y)return torch.cat(outputs, dim=0), (H,)vocab_size, num_hiddens, device = len(vocab), 256, d2l.try_gpu()
num_epochs, lr = 500, 1
model_change2 = d2l.RNNModelScratch(len(vocab), num_hiddens, device, get_params_change2,init_gru_state_change2, gru_change2)
d2l.train_ch8(model_change2, train_iter, vocab, lr, num_epochs, device)
perplexity 1.0, 38633.7 tokens/sec on cuda:0
time travelleryou can show black is white by argument said filby
traveller with a slight accession ofcheerfulness really thi

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/109628.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

PS修改背景色,线框底图

1、打开图片,ctrlj复制一层 2、图像-调整-反相 3、ctrll调整色阶,将中间的色块向右移,灰色线和字体的会变黑

游戏类app有哪些变现方式?

游戏类app有多变现策略,一些是一些主要的方式:#APP广告变现# AdSet官方资讯-上海神蓍信息科技有限公司 一、游戏销售 一次性购买:玩家支付一次性费用购买游戏,之后可以免费游玩。这种模式常见于主机游戏和PC游戏。 游戏包&…

VR数字政务为我们带来了哪些便捷之处?

每每在政务大厅排队的时候,总是在想未来政务服务会变成什么样子呢?会不会变得更加便捷呢?今天我们就来看看VR数字政务,能够为我们带来哪些便捷之处吧! 传统的政务服务中,不仅办事流程复杂,而且每…

单链表的相关操作(初阶--寥寥万字不成敬意)

目录 链表的概念 链表的相关操作: 链表的创建: 打印链表: 申请新节点: 链表的尾插: !!!对于传参中二级指针的解释: 链表的头插: 链表的尾删&#xff…

保护隐私就是在保护自己!如何在Android上更改应用程序权限

如果你关心隐私,知道如何在Android上更改应用程序权限将成为一项非常重要的技能。即使是最好的安卓应用程序也可以对手机的功能和数据进行广泛的访问,因此准确控制它们的使用范围会有所帮助。 一旦你在手机上加载了应用程序,你可能会注意到它…

【LeetCode】35. 搜索插入位置

1 问题 给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 示例 1: 输入: nums [1,3,5,6], target 5 输出: 2 示例…

在线课堂知识系统源码系统+前端+后端完整搭建教程

大家好啊,今天罗峰来给大家分享一款在线课堂知识系统源码系统。这款系统的功能十分强大。可以使用手机随时随地地学习,有专业的导师答疑解惑。支持视频,音频,图文章节。以下是部分核心代码图: 系统特色功能一览&#x…

Linux上Docker的安装以及作为非运维人员应当掌握哪些Docker命令

目录 前言 1、安装步骤 2、理解镜像和容器究竟是什么意思 2.1、为什么我们要知道什么是镜像,什么是容器? 2.2、什么是镜像? 2.3、什么是容器? 2.4、Docker在做什么? 2.5、什么是镜像仓库? 2、Dock…

AN动画基础——缓动动画

【AN动画基础——影片剪辑滤镜】 基础动画缓动动画缓动原理实例应用 本篇内容:了解曲线原理 重点内容:缓动动画 工 具:Adobe Animate 2022 基础动画 我们先做一个非缓动的效果的动画。 绘制一个矩形设置成元件—图形,30帧插入关…

论文阅读 Memory Enhanced Global-Local Aggregation for Video Object Detection

Memory Enhanced Global-Local Aggregation for Video Object Detection Abstract 人类如何识别视频中的物体?由于单一帧的质量低下,仅仅利用一帧图像内的信息可能很难让人们在这一帧中识别被遮挡的物体。我们认为人们识别视频中的物体有两个重要线索&…

C# 取消一个不带CancellationToken的任务?

在异步函数中&#xff0c;一般使用CancellationToken来控制函数的执行。这个Token需要作为参数传递到异步函数中&#xff1a; public staic Task<T> DoAsync(CancellationToken token) {... } 那么如果一个异步函数没有这个Token参数&#xff0c;如何取消呢? 之前看到一…

TODO Vue typescript forEach的bug,需要再核實

forEach 一個string[]&#xff0c;只有最後一個匹配條件有效&#xff0c;其它條件無效。 所以&#xff0c;只能替換成普通的for循環。 console.log(taskList)// for (const _task of taskList.value) {// if (_task invoiceSendEmail) {// form.value.invoiceSendEmail…

Hadoop3教程(十五):MapReduce中的Combiner

文章目录 &#xff08;103&#xff09;Combiner概述什么是CombinerCombiner有什么用处Combiner有什么特点如何自定义Combiner &#xff08;104&#xff09;Combiner合并案例实操如何从日志里查看Combiner如果不存在Reduce阶段&#xff0c;会发生什么自定义Combiner的两种方式 参…

【非root用户、CentOS系统】中使用源码安装gcc/g++的教程

1.引言 系统&#xff1a;CentOS-7.9 显卡驱动版本&#xff1a;460 CUDA Version: 11.2 &#x1f33c;基于本地环境选择安装gcc-10.1.0 &#x1f449; gcc下载网址 2.安装说明 下载好对应的gcc的安装包并解压&#xff1a; 打开gcc-10.1.0/contrib/download_prerequisites&#…

关于gt_sampling的理解

pcdet/datasets/augmentor/data_augmentor.py def gt_sampling(self, configNone):db_sampler database_sampler.DataBaseSampler(root_pathself.root_path,sampler_cfgconfig,class_namesself.class_names,loggerself.logger)return db_sampler此函数指向DataBaseSampler类&a…

0基础学习VR全景平台篇第109篇:认识拼接软件PTGui Pro

上课&#xff01;全体起立~ 大家好&#xff0c;欢迎观看蛙色官方系列全景摄影课程&#xff01;今天给大家讲解我们全景后期拼接软件PTgui pro&#xff0c;下面我们开始吧&#xff01; &#xff08;PTgui pro软件课程大纲&#xff09; 1.PTGui这个软件是什么 发明人 &#xf…

【网络编程】从网络编程、TCP/IP开始到BIO、NIO入门知识(未完待续...)

目录 前言前置知识一、计算机网络体系结构二、TCP/IP协议族2.1 简介*2.2 TCP/IP网络传输中的数据2.3 地址和端口号2.4 小总结 三、TCP/UDP特性3.1 TCP特性TCP 3次握手TCP 4次挥手TCP头部结构体 3.2 UDP特性 四、总结 课程内容一、网络通信编程基础知识1.1 什么是Socket1.2 长连…

Python之旅----判断语句

布尔类型和比较运算符 布尔类型 布尔类型的定义 布尔类型的字面量&#xff1a; True 表示真&#xff08;是、肯定&#xff09; False 表示假 &#xff08;否、否定&#xff09; 也就是布尔类型进行判断&#xff0c;只会有2个结果&#xff1a;是或否 定义变量存储布尔类型…

天猫店铺商品评论数据采集,天猫商品评论数据接口,天猫API接口

天猫店铺商品评论数据接口可以获取到商品ID&#xff0c;商品标题&#xff0c;商品优惠券&#xff0c;商品到手价&#xff0c;商品价格&#xff0c;商品优惠价&#xff0c;商品sku属性&#xff0c;商品图片&#xff0c;商品视频&#xff0c;商品sku属性图片&#xff0c;商品属性…

ant中的environment属性

在ant的配置文件中&#xff0c;可以设置属性environment的值&#xff0c;设置的这个值就作为访问环境变量的前缀。例如声明了environment“env”&#xff0c;那么就可以通过env.<环境变量名称>来访问环境变量。 例如创建了一个Java工程&#xff0c;在工程目录下有一个bu…