简述快速失败(fail-fast)和安全失败(fail-safe)的区别 ?

1:快速失败(fail-fast):
在用迭代器遍历一个集合对象时,如果遍历过程中对集合对象的内容进行了修改(增加、删除、修改),则会抛出Concurrent Modification Exception。
原理:迭代器在遍历时直接访问集合中的内容,并且在遍历过程中使用一个 modCount 变量。集合在被遍历期间如果内容发生变化,就会改变modCount的值。每当迭代器使用hashNext()/next()遍历下一个元素之前,都会检测modCount变量是否为expectedmodCount值,是的话就返回遍历;否则抛出异常,终止遍历。
注意:这里异常的抛出条件是检测到 modCount!=expectedmodCount 这个条件。如果集合发生变化时修改modCount值刚好又设置为了expectedmodCount值,则异常不会抛出。因此,不能依赖于这个异常是否抛出而进行并发操作的编程,这个异常只建议用于检测并发修改的bug。
场景:java.util包下的集合类都是快速失败的,不能在多线程下发生并发修改(迭代过程中被修改)。

2:安全失败(fail-safe):
采用安全失败机制的集合容器,在遍历时不是直接在集合内容上访问的,而是先复制原有集合内容,在拷贝的集合上进行遍历。
原理:由于迭代时是对原集合的拷贝进行遍历,所以在遍历过程中对原集合所作的修改并不能被迭代器检测到,所以不会触发Concurrent Modification Exception。
缺点:基于拷贝内容的优点是避免了Concurrent Modification Exception,但同样地,迭代器并不能访问到修改后的内容,即:迭代器遍历的是开始遍历那一刻拿到的集合拷贝,在遍历期间原集合发生的修改迭代器是不知道的。
场景:java.util.concurrent包下的容器都是安全失败,可以在多线程下并发使用,并发修改。

-----------------------------------

fail-fast和fail-safe的区别: 

fail-safe允许在遍历的过程中对容器中的数据进行修改,而fail-fast则不允许。

fail-fast ( 快速失败 )

fail-fast:直接在容器上进行遍历,在遍历过程中,一旦发现容器中的数据被修改了,会立刻抛出ConcurrentModificationException异常导致遍历失败。java.util包下的集合类都是快速失败机制的, 常见的的使用fail-fast方式遍历的容器有HashMap和ArrayList等。

在使用迭代器遍历一个集合对象时,比如增强for,如果遍历过程中对集合对象的内容进行了修改(增删改),会抛出ConcurrentModificationException 异常.

fail-fast的出现场景

在我们常见的java集合中就可能出现fail-fast机制,比如ArrayList,HashMap。在多线程和单线程环境下都有可能出现快速失败。

1、单线程环境下的fail-fast:

ArrayList发生fail-fast例子:

public static void main(String[] args) {

    List<String> list = new ArrayList<>();

    for (int i = 0 ; i < 10 ; i++ ) {

        list.add(i + "");

    }

    Iterator<String> iterator = list.iterator();

    int i = 0 ;

    while(iterator.hasNext()) {

        if (i == 3) {

             list.remove(3);//异常的根源

        }

        System.out.println(iterator.next());

        i ++;

    }

该段代码定义了一个Arraylist集合,并使用迭代器遍历,在遍历过程中,刻意在某一步迭代中remove一个元素,这个时候,就会发生fail-fast。

HashMap发生fail-fast:

public static void main(String[] args) {

    Map<String, String> map = new HashMap<>();

    for (int i = 0 ; i < 10 ; i ++ ) {

        map.put(i+"", i+"");

    }

    Iterator<Entry<String, String>> it = map.entrySet().iterator();

    int i = 0;

    while (it.hasNext()) {

       if (i == 3) {

           map.remove(3+"");//异常的根源

       }

       Entry<String, String> entry = it.next();

       System.out.println("key= " + entry.getKey() + " and value= " + entry.getValue());

          i++;

    }

}

该段代码定义了一个hashmap对象并存放了10个键值对,在迭代遍历过程中,使用map的remove方法移除了一个元素,导致抛出了ConcurrentModificationException异常:

2、多线程环境下:

public class FailFastTest {

     public static List<String> list = new ArrayList<>();

      private static class MyThread1 extends Thread {

           @Override

           public void run() {

                Iterator<String> iterator = list.iterator();

                while(iterator.hasNext()) {

                     String s = iterator.next();

                     System.out.println(this.getName() + ":" + s);

                     try {

                       Thread.sleep(1000);

                     } catch (InterruptedException e) {

                        e.printStackTrace();

                     }

                }

                super.run();

           }

     } 

     private static class MyThread2 extends Thread {

           int i = 0;

           @Override

           public void run() {

                while (i < 10) {

                     System.out.println("thread2:" + i);

                     if (i == 2) {

                         list.remove(i);

                     }

                     try {

                         Thread.sleep(1000);

                     } catch (InterruptedException e) {

                         e.printStackTrace();

                     }

                     i ++;

                }

           }

     } 

     public static void main(String[] args) {

           for(int i = 0 ; i < 10;i++){

               list.add(i+"");

           }

           MyThread1 thread1 = new MyThread1();

           MyThread2 thread2 = new MyThread2();

           thread1.setName("thread1");

           thread2.setName("thread2");

           thread1.start();

           thread2.start();

     }

}

启动两个线程,分别对其中一个对list进行迭代,另一个在线程1的迭代过程中去remove一个元素,结果也是抛出了java.util.ConcurrentModificationException

fail-fast的原理:

fail-fast是如何抛出ConcurrentModificationException异常的,又是在什么情况下才会抛出?

我们知道,对于集合如list,map类,我们都可以通过迭代器来遍历,而Iterator其实只是一个接口,具体的实现还是要看具体的集合类中的内部类去实现Iterator并实现相关方法。这里我们就以ArrayList类为例。在ArrayList中,当调用list.iterator()时,其源码是: 

public Iterator<E> iterator() {

        return new Itr();

}

即它会返回一个新的Itr类,而Itr类是ArrayList的内部类,实现了Iterator接口,下面是该类的源码:

    /**

     * An optimized version of AbstractList.Itr

     */

    private class Itr implements Iterator<E> {

        int cursor;       // index of next element to return

        int lastRet = -1; // index of last element returned; -1 if no such

        int expectedModCount = modCount;

         public boolean hasNext() {

            return cursor != size;

        }

         @SuppressWarnings("unchecked")

        public E next() {

            checkForComodification();

            int i = cursor;

            if (i >= size)

                throw new NoSuchElementException();

            Object[] elementData = ArrayList.this.elementData;

            if (i >= elementData.length)

                throw new ConcurrentModificationException();

            cursor = i + 1;

            return (E) elementData[lastRet = i];

        } 

        public void remove() {

            if (lastRet < 0)

                throw new IllegalStateException();

            checkForComodification();

            try {

                ArrayList.this.remove(lastRet);

                cursor = lastRet;

                lastRet = -1;

                expectedModCount = modCount;

            } catch (IndexOutOfBoundsException ex) {

                throw new ConcurrentModificationException();

            }

        }

         @Override

        @SuppressWarnings("unchecked")

        public void forEachRemaining(Consumer<? super E> consumer) {

            Objects.requireNonNull(consumer);

            final int size = ArrayList.this.size;

            int i = cursor;

            if (i >= size) {

                return;

            }

            final Object[] elementData = ArrayList.this.elementData;

            if (i >= elementData.length) {

                throw new ConcurrentModificationException();

            }

            while (i != size && modCount == expectedModCount) {

                consumer.accept((E) elementData[i++]);

            }

            // update once at end of iteration to reduce heap write traffic

            cursor = i;

            lastRet = i - 1;

            checkForComodification();

        }

         final void checkForComodification() {

            if (modCount != expectedModCount)

                throw new ConcurrentModificationException();

        }

    }

其中,有三个属性:

int cursor;       // index of next element to return

int lastRet = -1; // index of last element returned; -1 if no such

int expectedModCount = modCount;

cursor是指集合遍历过程中的即将遍历的元素的索引,lastRet是cursor -1,默认为-1,即不存在上一个时,为-1,它主要用于记录刚刚遍历过的元素的索引。expectedModCount这个就是fail-fast判断的关键变量了,它初始值就为ArrayList中的modCount。(modCount是抽象类AbstractList中的变量,默认为0,而ArrayList 继承了AbstractList ,所以也有这个变量,modCount用于记录集合操作过程中作的修改次数,与size还是有区别的,并不一定等于size)

我们一步一步来看:

 public boolean hasNext() {

      return cursor != size;

 }

迭代器迭代结束的标志就是hasNext()返回false,而该方法就是用cursor游标和size(集合中的元素数目)进行对比,当cursor等于size时,表示已经遍历完成。

接下来看看最关心的next()方法,看看为什么在迭代过程中,如果有线程对集合结构做出改变,就会发生fail-fast:

@SuppressWarnings("unchecked")

public E next() {

    checkForComodification();

    int i = cursor;

    if (i >= size)

         throw new NoSuchElementException();

    Object[] elementData = ArrayList.this.elementData;

    if (i >= elementData.length)

         throw new ConcurrentModificationException();

    cursor = i + 1;

    return (E) elementData[lastRet = i];

}

从源码知道,每次调用next()方法,在实际访问元素前,都会调用checkForComodification方法,该方法源码如下:

final void checkForComodification() {

    if (modCount != expectedModCount)

      throw new ConcurrentModificationException();

}

可以看出,该方法才是判断是否抛出ConcurrentModificationException异常的关键。在该段代码中,当modCount != expectedModCount时,就会抛出该异常。但是在一开始的时候,expectedModCount初始值默认等于modCount,为什么会出现modCount != expectedModCount,很明显expectedModCount在整个迭代过程除了一开始赋予初始值modCount外,并没有再发生改变,所以可能发生改变的就只有modCount,在前面关于ArrayList扩容机制的分析中,可以知道在ArrayList进行add,remove,clear等涉及到修改集合中的元素个数的操作时,modCount就会发生改变(modCount ++),所以当另一个线程(并发修改)或者同一个线程遍历过程中,调用相关方法使集合的个数发生改变,就会使modCount发生变化,这样在checkForComodification方法中就会抛出ConcurrentModificationException异常。

类似的,hashMap中发生的原理也是一样的。

避免fail-fast的方法:

了解了fail-fast机制的产生原理,接下来就看看如何解决fail-fast

方法1

单线程的遍历过程中,如果要进行remove操作,可以调用迭代器的remove方法而不是集合类的remove方法。看看ArrayList中迭代器的remove方法的源码:

public void remove() {

    if (lastRet < 0)

        throw new IllegalStateException();

    checkForComodification();

    try {

       ArrayList.this.remove(lastRet);

       cursor = lastRet;

       lastRet = -1;

       expectedModCount = modCount;

   } catch (IndexOutOfBoundsException ex) {

       throw new ConcurrentModificationException();

   }

}

  可以看到,该remove方法并不会修改modCount的值,并且不会对后面的遍历造成影响,因为该方法remove不能指定元素,只能remove当前遍历过的那个元素,所以调用该方法并不会发生fail-fast现象。该方法有局限性。

例子:

public static void main(String[] args) {

   List<String> list = new ArrayList<>();

   for (int i = 0 ; i < 10 ; i++ ) {

       list.add(i + "");

   }

   Iterator<String> iterator = list.iterator();

   int i = 0 ;

   while(iterator.hasNext()) {

       if (i == 3) {

           iterator.remove(); //迭代器的remove()方法

       }

       System.out.println(iterator.next());

       i ++;

   }

}

方法2

使用fail-safe机制,使用java并发包(java.util.concurrent)中的CopyOnWriterArrayList类来代替ArrayList,使用 ConcurrentHashMap来代替hashMap。

fail-safe ( 安全失败 )

fail-safe:这种遍历基于容器的一个克隆。因此,对容器内容的修改不影响遍历。java.util.concurrent包下的容器都是安全失败的,可以在多线程下并发使用,并发修改。常见的的使用fail-safe方式遍历的容器有ConcerrentHashMap和CopyOnWriteArrayList等。

原理:

采用安全失败机制的集合容器,在遍历时不是直接在集合内容上访问的,而是先复制原有集合内容,在拷贝的集合上进行遍历。由于迭代时是对原集合的拷贝进行遍历,所以在遍历过程中对原集合所作的修改并不能被迭代器检测到,所以不会触发Concurrent Modification Exception。

缺点:基于拷贝内容的优点是避免了Concurrent Modification Exception,但同样地,迭代器并不能访问到修改后的内容,即:迭代器遍历的是开始遍历那一刻拿到的集合拷贝,在遍历期间原集合发生的修改迭代器是不知道的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/108929.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Kotlin注释

一、设置注释样式 按需配置 二、单行多行注释 fun main() {// 单行注释println("单行注释") //单行注释/** 多行注释* */println("多行注释") }

c++ fstream 文件追加模式

目录 c 覆盖模式&#xff1a; c 追加模式&#xff1a; c 覆盖模式&#xff1a; #include <fstream>int main() {std::ofstream file("example.txt");if (file.is_open()) {file << "Hello, World!";file.close();}return 0; }在这个例子中&a…

Hive引擎MR、Tez、Spark

Hive引擎包括&#xff1a;默认MR、Tez、Spark 不更换引擎hive默认的就是MR。 MapReduce&#xff1a;是一种编程模型&#xff0c;用于大规模数据集&#xff08;大于1TB&#xff09;的并行运算。 Hive on Spark&#xff1a;Hive既作为存储元数据又负责SQL的解析优化&#xff0…

python中matrix()矩阵和array()数组(待完善)

参考&#xff1a;python矩阵中matrix()和array()函数区别-CSDN博客 区别&#xff1a; 维度&#xff1a;ndarray可以是多维的&#xff0c;包括1D、2D、3D等&#xff0c;而matrix只能是2维的&#xff0c;也就是矩阵。数据类型&#xff1a;ndarray的数据类型可以不一致&#xf…

ELK + Filebeat 分布式日志管理平台部署

ELK Filebeat 分布式日志管理平台部署 1、前言1.1日志分析的作用1.2需要收集的日志1.3完整日志系统的基本特征 2、ELK概述2.1ELK简介2.2为什么要用ELK?2.3ELK的组件 3、ELK组件详解3.1Logstash3.1.1简介3.1.2Logstash命令常用选项3.1.3Logstash 的输入和输出流3.1.4Logstash配…

【LeetCode】34. 在排序数组中查找元素的第一个和最后一个位置

1 问题 给你一个按照非递减顺序排列的整数数组 nums&#xff0c;和一个目标值 target。请你找出给定目标值在数组中的开始位置和结束位置。 如果数组中不存在目标值 target&#xff0c;返回 [-1, -1]。 你必须设计并实现时间复杂度为 O(log n) 的算法解决此问题。 示例 1&a…

Qt入门之深入了解QWidget类

文章目录 一、QWidget简介一、QWidget的基本特性&#xff1a;1.1 绘图功能1.2 事件处理1.3布局管理 三、QWidget的子类1. QMainWindow&#xff08;主窗口类&#xff09;2. QPushButton&#xff08;按钮类&#xff09;&#xff1a;3. QLabel&#xff08;标签类&#xff09;&…

密码学三 btc 钱包 节点 挖矿 51%攻击 双花攻击

03-BTC-数据结构_哔哩哔哩_bilibili 哈希指针并解释 比特币的每个区块都包含一个区块头和区块体两部分。 在区块头中,有一个字段是用于存储前一个区块的哈希值,我们把这个存储前一个区块哈希值的字段称为“哈希指针”。 这个哈希指针的作用是将本区块指向前一个区块,连接起整…

CentOS有IP地址,连接不上Xshell或使用Xshell时突然断开

问题原因&#xff1a;未在电脑主机的网络中进行IP地址配置 解决办法&#xff1a; 1.打开控制面板&#xff0c;选择‘网络与共享中心’ 2.选择“更改适配器设置” 3.右键点击以太网3“属性” 4.选择协议版本4&#xff0c;点击属性 5.IP地址填写CentOS的IP地址&#xff1a;192.…

Epoch、批量大小、迭代次数

梯度下降 它是 机器学习中使用的迭代 优化算法&#xff0c;用于找到最佳结果&#xff08;曲线的最小值&#xff09;。 坡度 是指 斜坡的倾斜度或倾斜度 梯度下降有一个称为 学习率的参数。 正如您在上图&#xff08;左&#xff09;中看到的&#xff0c;最初步长较大&#…

2013年408真题复盘

紫色标记是认为有一定的思维难度或重点总结 红色标记是这次刷真题做错的 记录自己对题目的一些想法与联系&#xff0c;可能并不太关注题目本身。 分数用时 选择部分10/17 72/8034min大题部分总分 摘自知乎老哥&#xff1a;“我做历年真题时&#xff0c;绝大部分是130~139&#…

SpringBoot基础详解

目录 SpringBoot自动配置 基于条件的自动配置 调整自动配置的顺序 纷杂的SpringBoot Starter 手写简单spring-boot-starter示例 SpringBoot自动配置 用一句话说自动配置&#xff1a;EnableAutoConfiguration借助SpringFactoriesLoader将标准了Configuration的JavaConfig类…

微信小程序中如何使用fontawesome6的免费图标

一、官网下载fontawesome6 Download Font Awesome Free or Pro | Font Awesome 二、使用transfer编码成Base64 transfer打开官网&#xff1a;Online font-face generator — Transfonter 首先先把刚刚下载的fontawesome6解压&#xff0c;将文件夹中的字体上传&#xff08;点…

java入参为对象的(非基本数据类型int/float等)修改属性会影响原始对象

ApiOperation("登录接口")RequestMapping(value "/login", method RequestMethod.POST)public Result<JSONObject> login(RequestBody SysLoginModel sysLoginModel){Result<JSONObject> result new Result<JSONObject>();// by wang…

禁用和开启笔记本电脑的键盘功能,最快的方式

笔记本键盘通常较小&#xff0c;按键很不方便&#xff0c;当我们外接了键盘时就不需要再使用自带的键盘了&#xff0c;而且午睡的时候&#xff0c;总是担心碰到笔记本的键盘&#xff0c;可能会删掉我们的代码什么的&#xff0c;所以就想着怎么禁用掉&#xff0c;下面是操作步骤…

面向切面:AOP

文章目录 简介相关术语①横切关注点②通知&#xff08;增强&#xff09;③切面④目标⑤代理⑥连接点⑦切入点 场景模拟代理模式静态代理动态代理 基于注解的AOP&#xff08;重点&#xff09;准备工作各种通知切入点表达式语法重用切入点表达式获取通知的相关信息 环绕通知 切面…

分类算法-逻辑回归与二分类

1、逻辑回归的应用场景 广告点击率是否为垃圾邮件是否患病金融诈骗虚假账号 看到上面的例子&#xff0c;我们可以发现其中的特点&#xff0c;那就是都属于两个类别之间的判断。逻辑回归就是解决二分类问题的利器。 2、 逻辑回归的原理 2.1 输入 逻辑回归的输入就是一个线性…

HarmonyOS/OpenHarmony原生应用开发-华为Serverless服务支持情况(四)

文档中的TS作者认为就是ArkTS之意。 一、云存储 AppGallery Connect&#xff08;简称AGC&#xff09;云存储是一种可伸缩、免维护的云端存储服务&#xff0c;可用于存储图片、音频、视频或其他由用户生成的内容。借助云存储服务&#xff0c;您可以无需关心存储服务器的开发、…

Python自动化运维实战——Telnetlib和Netmiko自动化管理网络设备

❤️博客主页&#xff1a; iknow181&#x1f525;系列专栏&#xff1a; Python、JavaSE、JavaWeb、CCNP&#x1f389;欢迎大家点赞&#x1f44d;收藏⭐评论✍ 目录 一、前言 二、准备工作 三、Telnetlib Telnetlib介绍 Telnetlib模块及操作方法介绍 Telnetlib配置设备 T…

uniapp:使用subNVue原生子窗体在map上层添加自定义组件

我们想要在地图上层添加自定义组件&#xff0c;比如一个数据提示框&#xff0c;点一下会展开&#xff0c;再点一下收起&#xff0c;在h5段显示正常&#xff0c;但是到app端真机测试发现组件显示不出来&#xff0c;这是因为map是内置原生组件&#xff0c;层级最高&#xff0c;自…