linux下 u2net tensorrt模型部署

  • TensorRT系列之 Windows10下yolov8 tensorrt模型加速部署

  • TensorRT系列之 Linux下 yolov8 tensorrt模型加速部署

  • TensorRT系列之 Linux下 yolov7 tensorrt模型加速部署

  • TensorRT系列之 Linux下 yolov6 tensorrt模型加速部署

  • TensorRT系列之 Linux下 yolov5 tensorrt模型加速部署

  • TensorRT系列之 Linux下 yolox tensorrt模型加速部署

  • TensorRT系列之 Linux下 u2net tensorrt模型加速部署

    文章目录

    • ubuntu下u2net tensorrt模型部署
      • 一、Ubuntu18.04环境配置
      • 1.1 安装工具链和opencv
      • 1.2 安装Nvidia相关库
        • 1.2.1 安装Nvidia显卡驱动
        • 1.2.2 安装 cuda11.3
        • 1.2.3 安装 cudnn8.2
        • 1.2.4 下载 tensorrt8.4.2.4
        • 1.2.5 下载仓库TensorRT-Alpha并设置
      • 二、从u2net源码中导出onnx文件
      • 三、利用tensorrt编译onnx模型
      • 四、编译执行u2net-tensorrt工程
      • 五、结束语

ubuntu下u2net tensorrt模型部署

  • U-2-Net是一种基于显著对象检测(SOD)的卷积神经网络,其核心思想是探索比场景或图像周围区域更专注的物体或区域,因此非常适合于做抠图应用。这种算法主要利用由AlexNet,VGG,ResNet,ResNeXt,DenseNet等骨干网络提取的深度特征进行显著物体检测。

  • U-2-Net在设计上进行了一些创新。首先,它采用了编码器-解码器的结构,这种结构在许多分割模型中都有广泛应用,如U-Net。其次,U-2-Net在编码器和解码器之间添加了跳跃连接(skip connection),即在每个编码器阶段,都会将对应的特征图与解码器中的相应特征图相加。这种跳跃连接有助于将编码器的低级特征与解码器的高级特征相结合,从而提高分割的准确性。

  • U-2-Net的应用场景非常广泛,除了显著对象检测外,还可以应用于生物医学图像分割、语义分割等方向。由于U-2-Net具有较好的分割性能和较低的计算复杂度,因此在实际应用中具有较高的实用价值。

  • u2net对物体分割的边缘细节把控非常到位,如下图是检测效果。
    在这里插入图片描述
    在这里插入图片描述

本文提供u2net-tensorrt加速方法。
有源码!有源码!有源码! 不要慌,哈哈哈。
在这里插入图片描述

一、Ubuntu18.04环境配置

如果您对tensorrt不是很熟悉,请务必保持下面库版本一致。
请注意: Linux系统安装以下库,务必去进入系统bios下,关闭安全启动(设置 secure boot 为 disable)

1.1 安装工具链和opencv

sudo apt-get update 
sudo apt-get install build-essential 
sudo apt-get install git
sudo apt-get install gdb
sudo apt-get install cmake
sudo apt-get install libopencv-dev  
# pkg-config --modversion opencv

1.2 安装Nvidia相关库

注:Nvidia相关网站需要注册账号。

1.2.1 安装Nvidia显卡驱动

ubuntu-drivers devices
sudo add-apt-repository ppa:graphics-drivers/ppa
sudo apt update
sudo apt install nvidia-driver-470-server # for ubuntu18.04
nvidia-smi

1.2.2 安装 cuda11.3

  • 进入链接: https://developer.nvidia.com/cuda-toolkit-archive
  • 选择:CUDA Toolkit 11.3.0(April 2021)
  • 选择:[Linux] -> [x86_64] -> [Ubuntu] -> [18.04] -> [runfile(local)]

    在网页你能看到下面安装命令,我这里已经拷贝下来:
wget https://developer.download.nvidia.com/compute/cuda/11.3.0/local_installers/cuda_11.3.0_465.19.01_linux.run
sudo sh cuda_11.3.0_465.19.01_linux.run

cuda的安装过程中,需要你在bash窗口手动作一些选择,这里选择如下:

  • select:[continue] -> [accept] -> 接着按下回车键取消Driver和465.19.01这个选项,如下图(it is important!) -> [Install]

    在这里插入图片描述
    bash窗口提示如下表示安装完成
#===========
#= Summary =
#===========#Driver:   Not Selected
#Toolkit:  Installed in /usr/local/cuda-11.3/
#......

把cuda添加到环境变量:

vim ~/.bashrc

把下面拷贝到 .bashrc里面

# cuda v11.3
export PATH=/usr/local/cuda-11.3/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-11.3/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
export CUDA_HOME=/usr/local/cuda-11.3

刷新环境变量和验证

source ~/.bashrc
nvcc -V

bash窗口打印如下信息表示cuda11.3安装正常

nvcc: NVIDIA (R) Cuda compiler driver<br>
Copyright (c) 2005-2021 NVIDIA Corporation<br>
Built on Sun_Mar_21_19:15:46_PDT_2021<br>
Cuda compilation tools, release 11.3, V11.3.58<br>
Build cuda_11.3.r11.3/compiler.29745058_0<br>

1.2.3 安装 cudnn8.2

  • 进入网站:https://developer.nvidia.com/rdp/cudnn-archive
  • 选择: Download cuDNN v8.2.0 (April 23rd, 2021), for CUDA 11.x
  • 选择: cuDNN Library for Linux (x86_64)
  • 你将会下载这个压缩包: “cudnn-11.3-linux-x64-v8.2.0.53.tgz”
# 解压
tar -zxvf cudnn-11.3-linux-x64-v8.2.0.53.tgz

将cudnn的头文件和lib拷贝到cuda11.3的安装目录下:

sudo cp cuda/include/cudnn.h /usr/local/cuda/include/
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64/
sudo chmod a+r /usr/local/cuda/include/cudnn.h
sudo chmod a+r /usr/local/cuda/lib64/libcudnn*

1.2.4 下载 tensorrt8.4.2.4

本教程中,tensorrt只需要下载\、解压即可,不需要安装。

  • 进入网站: https://developer.nvidia.cn/nvidia-tensorrt-8x-download
  • 把这个打勾: I Agree To the Terms of the NVIDIA TensorRT License Agreement
  • 选择: TensorRT 8.4 GA Update 1
  • 选择: TensorRT 8.4 GA Update 1 for Linux x86_64 and CUDA 11.0, 11.1, 11.2, 11.3, 11.4, 11.5, 11.6 and 11.7 TAR Package
  • 你将会下载这个压缩包: “TensorRT-8.4.2.4.Linux.x86_64-gnu.cuda-11.6.cudnn8.4.tar.gz”
# 解压
tar -zxvf TensorRT-8.4.2.4.Linux.x86_64-gnu.cuda-11.6.cudnn8.4.tar.gz
# 快速验证一下tensorrt+cuda+cudnn是否安装正常
cd TensorRT-8.4.2.4/samples/sampleMNIST
make
cd ../../bin/

导出tensorrt环境变量(it is important!),注:将LD_LIBRARY_PATH:后面的路径换成你自己的!后续编译onnx模型的时候也需要执行下面第一行命令

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/xxx/temp/TensorRT-8.4.2.4/lib
./sample_mnist

bash窗口打印类似如下图的手写数字识别表明cuda+cudnn+tensorrt安装正常
在这里插入图片描述

1.2.5 下载仓库TensorRT-Alpha并设置

git clone https://github.com/FeiYull/tensorrt-alpha

设置您自己TensorRT根目录:

git clone https://github.com/FeiYull/tensorrt-alpha
cd tensorrt-alpha/cmake
vim common.cmake
# 在文件common.cmake中的第20行中,设置成你自己的目录,别和我设置一样的路径eg:
# set(TensorRT_ROOT /root/TensorRT-8.4.2.4)

二、从u2net源码中导出onnx文件

可以直接从网盘下载onnx文件[weiyun]:weiyun or google driver ,你也可以自己下载仓库,然后按照下面指令手动导出onnx文件:

# 下载u2net源码
https://github.com/xuebinqin/U-2-Net

安装 u2net环境

cd U-2-Net-master
pip install -r requirements.txt

在u2net官方git页面下载pth格式模型,你将得到文件:u2net.pth和u2netp.pth;其中,u2netp.pth是小模型。然后使用tensorrt-alpha中提供的python脚本导出onnx,脚本路径:TensorRT-Alpha/u2net/alpha_export.py,具体导出指令如下:

cp alpha_export.py U-2-Net-master
python alpha_export.py --net=u2net --weights=saved_models/u2net/u2net.pth
python alpha_export.py --net=u2netp --weights=saved_models/u2netp/u2netp.pth

三、利用tensorrt编译onnx模型

将你的onnx模型放到这个路径:tensorrt-alpha/data/u2net。

cd tensorrt-alpha/data/u2net
# 设置环境变量
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:~/TensorRT-8.4.2.4/lib

使用以下命令编译onnx模型:

# put your onnx file in this path:tensorrt-alpha/data/u2net
cd tensorrt-alpha/data/u2net
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:~/TensorRT-8.4.2.4/lib../../../../TensorRT-8.4.2.4/bin/trtexec   --onnx=u2net.onnx   --saveEngine=u2net.trt   --buildOnly --minShapes=images:1x3x320x320 --optShapes=images:4x3x320x320 --maxShapes=images:8x3x320x320
../../../../TensorRT-8.4.2.4/bin/trtexec   --onnx=u2netp.onnx  --saveEngine=u2netp.trt  --buildOnly --minShapes=images:1x3x320x320 --optShapes=images:4x3x320x320 --maxShapes=images:8x3x320x320

四、编译执行u2net-tensorrt工程

使用命令行编译下代码

git clone https://github.com/FeiYull/tensorrt-alpha
cd tensorrt-alpha/u2net
mkdir build
cd build
cmake ..
make -j10

按照需求执行推理,支持推理一张图片、在线推理视频文件,或者在线从摄像头获取视频流并推理。

## 320
# infer image
./app_u2net  --model=../../data/u2net/u2net.trt --size=320  --batch_size=1  --img=../../data/sailboat3.jpg  --show --savePath# infer video
./app_u2net  --model=../../data/u2net/u2net.trt --size=320 --batch_size=2  --video=../../data/people.mp4  --show# infer camera
./app_u2net  --model=../../data/u2net/u2net.trt --size=320 --batch_size=2  --cam_id=0  --show

例如:以下是u2net 部署后小模型的分割人像效果。在这里插入图片描述

再看一组发丝级别的分割效果:
在这里插入图片描述
在这里插入图片描述

五、结束语

都看到这里了,觉得可以请点赞收藏,有条件的去仓库点个star,仓库:https://github.com/FeiYull/tensorrt-alpha
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/108819.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

iperf3交叉编译

简介 iperf3是一个用于执行网络吞吐量测量的命令行工具。它支持时序、缓冲区、协议&#xff08;TCP&#xff0c;UDP&#xff0c;SCTP与IPv4和IPv6&#xff09;有关的各种参数。对于每次测试&#xff0c;它都会详细的带宽报告&#xff0c;延迟抖动和数据包丢失。 如果是ubuntu系…

华为---PPP协议简介及示例配置

PPP协议简介 PPP是Point-to-Point Protocol的简称&#xff0c;中文翻译为点到点协议。与以太网协议一样,PPP也是一个数据链路层协议。以太网协议定义了以太帧的格式&#xff0c;PPP协议也定义了自己的帧格式&#xff0c;这种格式的帧称为PPP帧。 利用PPP协议建立的二层网络称为…

MIT6.5830 Lab0-Go tutorial实验记录(三)

MIT6.5830 Lab0-Go tutorial实验记录&#xff08;三&#xff09; – WhiteNights Site 标签&#xff1a;Golang 在前面两次实验记录的铺垫&#xff0c;是时候完成第一项任务了。 实验步骤 补全handlers.go中缺失的代码 先来看第一个部分&#xff0c;从RidershipDB获取图像数据…

设计模式:工厂方法模式(C#、JAVA、JavaScript、C++、Python、Go、PHP):

本节主要介绍设计模式中的工厂方法模式。 简介&#xff1a; 工厂方法模式&#xff0c;它是对简单工厂模式的进一步抽象化&#xff0c;其好处是可以使系统在不修改原来代码的情况下引进新的产品&#xff0c;即满足开闭原则。 它定义了一个用于创建对象的工厂接口&#xff0c;让…

12-k8s-HPA自动扩缩容

文章目录 一、k8s弹性伸缩类型二、HPA原理三、metrics-server插件四、创建nginx提供负载测试五、部署HPA master操作即可 一、k8s弹性伸缩类型 Cluster-Autoscale: 集群容量(node数量)自动伸缩&#xff0c;跟自动化部署相关的&#xff0c;依赖iaas的弹性伸缩&#xff0c;主要用…

户外运动盛行,运动品牌如何利用软文推广脱颖而出?

全民健康意识的提升和城市居民对亲近自然的渴望带来户外运动的盛行&#xff0c;这也使运动品牌的市场保持强劲发展势头&#xff0c;那么在激烈的市场竞争中&#xff0c;运动品牌应该如何脱颖而出呢&#xff1f;下面就让媒介盒子告诉你&#xff01; 一、 分享户外运动干货 用户…

YAPI介绍及Docker Compose部署指南

我们团队的项目最初前后端是同一个开发人员在做&#xff0c;因此并不存在提供详细接口文档等问题。随着项目的不断迭代&#xff0c;团队规模逐渐扩大&#xff0c;我们决定将前后端分开&#xff0c;专门由专业的前端和后端人员进行开发工作。然而&#xff0c;这样的改变也带来了…

Ubuntu:ESP-IDF 开发环境配置【保姆级】

物联网开发学习笔记——目录索引 参考官网&#xff1a;ESP-IDF 物联网开发框架 | 乐鑫科技 ESP-IDF 是乐鑫官方推出的物联网开发框架&#xff0c;支持 Windows、Linux 和 macOS 操作系统。适用于 ESP32、ESP32-S、ESP32-C 和 ESP32-H 系列 SoC。它基于 C/C 语言提供了一个自给…

力扣每日一题45:跳跃游戏

题目描述&#xff1a; 给定一个长度为 n 的 0 索引整数数组 nums。初始位置为 nums[0]。 每个元素 nums[i] 表示从索引 i 向前跳转的最大长度。换句话说&#xff0c;如果你在 nums[i] 处&#xff0c;你可以跳转到任意 nums[i j] 处: 0 < j < nums[i] i j < n 返…

华为数通方向HCIP-DataCom H12-831题库(单选题:281-300)

第281题 如图所示,某工程师利用4台路由器进行网络互通测试,其中R1、R2、R3部署OSPF (Area0)实现网络互通,R2、R3、R4部署IS-IS(均部署为Level-2路由器)实现网络互通,现在该工程师在R1的OSPF进程中引入直连路由,在R2的IS-IS进程中引入OSPF路由,则以下关于该场景的描述,正…

CUDA学习笔记3——图像卷积实现

分别采用GPU、CPU对图像进行sobel滤波处理 #include <stdio.h> #include "cuda_runtime.h" #include "device_launch_parameters.h" #include<math.h> #include <malloc.h> #include <opencv2/opencv.hpp>#include <stdlib.h…

这应该是关于回归模型最全的总结了(附原理+代码)

本文将继续修炼回归模型算法&#xff0c;并总结了一些常用的除线性回归模型之外的模型&#xff0c;其中包括一些单模型及集成学习器。 保序回归、多项式回归、多输出回归、多输出K近邻回归、决策树回归、多输出决策树回归、AdaBoost回归、梯度提升决策树回归、人工神经网络、随…

Windows:VS Code IDE安装ESP-IDF【保姆级】

物联网开发学习笔记——目录索引 Visual Studio Code&#xff08;简称“VS Code”&#xff09;是Microsoft向开发者们提供的一款真正的跨平台编辑器。 参考&#xff1a; VS Code官网&#xff1a;Visual Studio Code - Code Editing. Redefined 乐鑫官网&#xff1a;ESP-IDF…

Python 爬虫实战之爬淘宝商品并做数据分析

前言 是这样的&#xff0c;之前接了一个金主的单子&#xff0c;他想在淘宝开个小鱼零食的网店&#xff0c;想对目前这个市场上的商品做一些分析&#xff0c;本来手动去做统计和分析也是可以的&#xff0c;这些信息都是对外展示的&#xff0c;只是手动比较麻烦&#xff0c;所以…

华为云云耀云服务器L实例评测|windows系统3389防爆破之安全加固教程

为什么要选择华为云云耀云服务器L实例&#xff1a; 华为云在全国范围内建立了多个数据中心&#xff0c;这些数据中心之间相互冗余&#xff0c;以确保高可靠性和可用性&#xff0c;用户可以选择最适合的区域来部署应用程序&#xff0c;以实现更好的性能和延迟。 相对于传统的物…

【Java 进阶篇】深入理解 JavaScript DOM Node 对象

在前端开发中&#xff0c;与HTML文档进行交互是一项基本任务。文档对象模型&#xff08;Document Object Model&#xff0c;简称DOM&#xff09;为开发者提供了一种以编程方式访问和操作HTML文档的方式。DOM的核心是节点&#xff08;Node&#xff09;对象&#xff0c;它代表了文…

各种语言【Python,Java,Go,Pascal,C++】不解压直接读取压缩包【rar,zip,7z,gz,tar,z...】中文本行

文章目录 &#xff08;零&#xff09;前言&#xff08;一&#xff09;【ZIP】格式&#xff08;1.1&#xff09;Python ⭐️&#xff08;1.2&#xff09;Java ⭐️&#xff08;1.3&#xff09;Golang ⭐️&#xff08;1.4&#xff09;Pascal&#xff08;1.4.1&#xff09;Lazaru…

GO-unioffice实现word编辑

导包 import ("fmt""log""os""time""github.com/unidoc/unioffice/common/license""github.com/unidoc/unioffice/document" ) 创建word文件 func CreateFile(name string) {filename : name ".docx&quo…

NCV7724DQBR2G车规级半桥电机驱动芯片-专为汽车,工业自动化应用提供完美解决方案

车规级半桥电机驱动芯片是一种用于驱动直流电机的芯片&#xff0c;常用于电动汽车、电动自行车等领域。它可以控制电机的转速和方向&#xff0c;并且具有过流保护、过温保护等功能&#xff0c;可以保证电机的安全运行。 NCV7724DQBR2G是一款车规级八通道半桥驱动器&#xff0c;…

新手最容易触发的10个PHP语言Bug分享

&#x1f3c6;作者简介&#xff0c;黑夜开发者&#xff0c;CSDN领军人物&#xff0c;全栈领域优质创作者✌&#xff0c;CSDN博客专家&#xff0c;阿里云社区专家博主&#xff0c;2023年6月CSDN上海赛道top4。 &#x1f3c6;数年电商行业从业经验&#xff0c;历任核心研发工程师…