ChatGPT快速入门

ChatGPT快速入门

  • 一、什么是ChatGPT
  • 二、ChatGPT底层逻辑
    • 2.1 实现原理
    • 2.2 IO流程
  • 三、ChatGPT应用场景
    • 3.1 知心好友
    • 3.2 文案助理
    • 3.3 创意助理
    • 3.4 角色扮演

一、什么是ChatGPT

ChatGPT指的是基于GPT(Generative Pre-trained Transformer)模型的对话生成系统,是一种基于自动编码器的语言模型,可以对单词、句子和段落进行预测和生成,是目前最先进的自然语言处理技术之一。ChatGPT将GPT模型应用于对话生成领域,可以模拟人类的对话行为,实现智能问答、聊天机器人等应用,其实就是一个文字生成器
在这里插入图片描述
ChatGPT所能实现的人类意图,来自于机器学习、神经网络以及Transformer模型的多种技术模型积累,经过多类技术累计,最终形成针对人类反馈信息学习的大模型预训练语言模型
在这里插入图片描述

二、ChatGPT底层逻辑

2.1 实现原理

在这里插入图片描述
ChatGPT是基于深度学习的语言模型,采用了Transformer架构。下面是ChatGPT实现的一般原理介绍:

  1. 数据集和预训练:ChatGPT的训练通常需要庞大的文本数据集。这些数据集可以是互联网上的公开数据集、对话记录、书籍等。在预训练阶段,ChatGPT使用这些数据对语言模型进行预训练,通过大量的自监督学习任务(如遮蔽语言建模)来学习语言的统计规律。
  2. Transformer架构:ChatGPT使用了Transformer模型架构,它由多个编码器层和解码器层组成。编码器负责将输入序列转换为隐藏表示,解码器则根据隐藏表示生成输出序列。Transformer架构通过自注意力机制(self-attention)来捕捉输入序列的上下文依赖关系,提高了模型表达能力。
  3. 微调和对话生成:在预训练完成后,ChatGPT通过微调阶段来进一步调整模型参数,使其适应特定的任务,如对话生成。微调阶段通常使用特定的对话数据集,其中包含了问题和回答的对应关系。通过在这些数据上进行有监督学习,ChatGPT学会了根据问题生成合理的回答。
  4. 上下文处理:ChatGPT能够理解对话的上下文是因为Transformer架构中的自注意力机制,它使模型能够关注到输入序列中的其他部分,从而更好地理解整个对话上下文。ChatGPT会根据之前的对话历史来生成回答,以保持连贯性。
  5. 生成策略:ChatGPT使用一种基于概率的生成策略,通过对词汇表中的词进行采样,从而生成回答。这种生成策略使得ChatGPT能够在一定程度上具备创造性,但也可能导致一些不准确或不符合语境的回答。

需要注意的是,尽管ChatGPT在很多情况下能够生成有意义的回答,但它并不具备真正的理解和推理能力。ChatGPT是通过大量的训练数据来学习统计规律,并且没有对特定领域的专业知识进行注入。因此,在使用ChatGPT时,我们需要仔细审查和验证其输出,以确保其准确性和可靠性

2.2 IO流程

在这里插入图片描述
ChatGPT进行文本内容生成通常可以分为以下几个步骤:

  1. 输入处理:ChatGPT接收到用户的输入文本后,首先对其进行预处理。这可能包括分词、标记化和向量化等操作,将输入文本转换为模型可以理解和处理的形式。
  2. 编码器处理:ChatGPT使用编码器部分来处理输入文本。编码器将输入文本的表示转换成隐藏表示,捕捉输入中的语义信息和上下文关系。这一步通常是通过多层的自注意力机制(self-attention)实现的,使得模型能够对输入序列中不同位置的单词进行关注和权重分配。
  3. 解码器处理:在编码器处理完输入后,ChatGPT将隐藏表示传递给解码器部分。解码器利用隐藏表示生成输出文本的方式有许多种,其中一个常见的方式是使用自注意力机制结合逐词生成(autoregressive generation)。解码器根据已生成的部分文本以及编码器的隐藏表示,按照一定的规则和概率分布预测下一个要生成的单词
  4. 采样策略:在生成文本时,ChatGPT采用不同的策略来选择生成的下一个单词。其中一个常见的策略是使用softmax函数将模型输出的概率分布转化为生成概率,并基于这个概率分布进行采样。通过在模型输出的概率分布中选择具有较高概率的单词,ChatGPT可以生成连贯、多样性的文本,但也可能导致一些重复或不符合语境的情况
  5. 重复步骤:生成下一个单词后,ChatGPT将其作为输入的一部分,再进行编码器处理和解码器处理的循环迭代,生成更长的文本序列,直至达到预定的生成长度或生成终止条件。

需要注意的是,这只是ChatGPT文本生成的一般流程,实际应用中会根据不同的任务和需求进行调整和优化。同时,在生成文本时,也需要注意对输出进行限制和过滤,以确保生成的文本满足特定的要求和约束。

三、ChatGPT应用场景

ChatGPT的应用场景非常多,比如问答、对话、文本生成、智能客服和智能编程等等,如下是ChatGPT相关的一些应用场景。

3.1 知心好友

在这里插入图片描述

3.2 文案助理

在这里插入图片描述

3.3 创意助理

在这里插入图片描述

3.4 角色扮演

例如:AIGC快速入门体验之虚拟对象

在这里插入图片描述

至此,ChatGPT快速入门介绍完成,后续会陆续输出更多ChatGPT相关的篇章~查阅过程中若遇到问题欢迎留言或私信交流。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/105776.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

设计模式03———包装器模式 c#

首先我们打开一个项目 在这个初始界面我们需要做一些准备工作 创建基础通用包 创建一个Plane 重置后 缩放100倍 加一个颜色 (个人喜好)调节渐变色 可更改同种颜色的色调 (个人喜好) 调节天空盒 准备工作做完后 接下我们做【…

接口测试如何测?最全的接口测试总结,资深测试老鸟整理...

目录:导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结(尾部小惊喜) 前言 1、接口测试的流程…

Windows:Arduino IDE 开发环境配置【保姆级】

参考官网:Arduino - Home Arduino是一款简单易学且功能丰富的开源平台,包含硬件部分(各种型号的Arduino开发板)和软件部分(Arduino IDE)以及广大爱好者和专业人员共同搭建和维护的互联网社区和资源。 Arduino IDE软件…

算法村开篇

大家好我是苏麟从今天开始我将带来算法的一些习题和心得体会等等...... 算法村介绍 我们一步步地学习算法本专栏会以闯关的方式来学习算法 循序渐进地系统的学习算法并掌握大部分面试知识 , 期待和大家一起进步 . 索大祝大家学有所成 , 前程似锦.

车载电子电器架构 —— 国产基础软件生态简介

我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 屏蔽力是信息过载时代一个人的特殊竞争力,任何消耗你的人和事,多看一眼都是你的不对。非必要不费力证明自己,无利益不试图说服别人,是精神上的节…

vue3 新特性(defineOptions defineModel)

Vue3.3 新特性-defineOptions 背景说明&#xff1a; 有 <script setup> 之前&#xff0c;如果要定义 props, emits 可以轻而易举地添加一个与 setup 平级的属性。 但是用了 <script setup> 后&#xff0c;就没法这么干了 setup 属性已经没有了&#xff0c;自然无法…

一文深入理解高并发服务器性能优化

我们现在已经搞定了 C10K并发连接问题 &#xff0c;升级一下&#xff0c;如何支持千万级的并发连接&#xff1f;你可能说&#xff0c;这不可能。你说错了&#xff0c;现在的系统可以支持千万级的并发连接&#xff0c;只不过所使用的那些激进的技术&#xff0c;并不为人所熟悉。…

Sui账户抽象消除用户使用障碍,让大规模用户使用区块链成为可能

Sui通过其本机语言和两个特定功能实现了账户抽象&#xff0c;使账户管理中更加细节化的过程自动化。无论是zkLogin还是赞助交易&#xff0c;都简化了用户的使用过程&#xff0c;而Sui Move的基本结构则使开发人员能够提供丝滑的体验。 最近&#xff0c;随着区块链寻求扩大其用…

基于Eigen的位姿转换

位姿中姿态的表示形式有很多种&#xff0c;比如&#xff1a;旋转矩阵、四元数、欧拉角、旋转向量等等。这里基于Eigen实现四种数学形式的相互转换功能。本文利用Eigen实现上述四种形式的相互转换。我这里给出一个SE3&#xff08;4*4&#xff09;(先平移、再旋转)的构建方法&…

有关范数的学习笔记

向量的【范数】&#xff1a;模长的推广&#xff0c;柯西不等式_哔哩哔哩_bilibili 模长 范数 这里UP主给了说明 点赞 范数理解&#xff08;0范数&#xff0c;1范数&#xff0c;2范数&#xff09;_一阶范数-CSDN博客 出租车/曼哈顿范数 det()行列式 正定矩阵&#xff08;Posit…

高校教务系统登录页面JS分析——皖西学院

高校教务系统密码加密逻辑及JS逆向 本文将介绍皖西学院教务系统的密码加密逻辑以及使用JavaScript进行逆向分析的过程。通过本文&#xff0c;你将了解到密码加密的基本概念、常用加密算法以及如何通过逆向分析来破解密码。 本文仅供交流学习&#xff0c;勿用于非法用途。 一、密…

软件工程与计算总结(十三)详细设计中的模块化与信息隐藏

一.模块化与信息隐藏思想 1.设计质量 好的设计要着重满足以下3方面&#xff1a;可管理性、灵活性、可理解性好的设计需要侧重于间接性和可观察性——简洁性使得系统模块易于管理&#xff08;理解和分解&#xff09;、开发&#xff08;修改与调试&#xff09;和复用。实践者都…

集成学习的小九九

集成学习&#xff08;Ensemble Learning&#xff09;是一种机器学习的方法&#xff0c;通过结合多个基本模型的预测结果来进行决策或预测。集成学习的目标是通过组合多个模型的优势&#xff0c;并弥补单个模型的不足&#xff0c;从而提高整体性能。 集成学习的主要策略 在集成…

如果不封车,坚持冬天骑行应该注意些什么?

亲爱的骑行爱好者们&#xff0c;你们好&#xff01;随着秋天的脚步渐行渐远&#xff0c;冬天也不远了。对于热爱骑行的你们来说&#xff0c;秋天的骑行是一种享受&#xff0c;而冬天的骑行则是一种挑战。那么&#xff0c;如果你打算在秋天骑行不封车&#xff0c;坚持过冬天&…

elementUI el-table+树形结构子节点选中后没有打勾?(element版本问题 已解决)

问题 1.不勾选父级CB111&#xff0c;直接去勾选子级&#xff08;ST2001…&#xff09;&#xff0c;子级选中后没有打勾显示 排查 一直以为是这个树形结构和表格不兼容产生的问题&#xff0c;到后来看官方demo都是可以勾选的&#xff0c;最后排查到了版本问题&#xff0c; 项…

竞赛选题 深度学习 机器视觉 车位识别车道线检测 - python opencv

0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; 深度学习 机器视觉 车位识别车道线检测 该项目较为新颖&#xff0c;适合作为竞赛课题方向&#xff0c;学长非常推荐&#xff01; &#x1f947;学长这里给一个题目综合评分(每项满分5分) …

《UnityShader入门精要》学习5

Unity中的基础光照 从宏观上来说&#xff0c;渲染包含了两大部分&#xff1a;决定一个像素的可见性&#xff0c;决定这个像素上的光照计算 我们是如何看到这个世界的 通常来讲&#xff0c;我们要模拟真实的光照环境来生成一张图像&#xff0c;需要考虑3种物理现象。 首先&a…

JOSEF约瑟 可调漏电继电器RT-LB230KS+Q-FL-100 导轨安装 配套零序互感器

一、产品用途及特点 RT-LB230KS漏电继电器&#xff08;以下简称继电器&#xff09;适用于交流电压为660V.至1140V电压系统中,频率为50Hz,电流15~4000A线路中做有无中性点漏电保护. 该继电器可与带分励脱扣器或失压脱扣器的断路器、交流接触器、磁力启动器等组成漏电保护装置&…

机器学习: 初探 定义与应用场景

机器学习 第一课 初探 定义与应用场景 机器学习 第一课 初探 定义与应用场景机器学习的历史机器学习为什么重要?机器学习的定义机器学习在日常生活中的应用推荐系统语音识别图像识别 商业领域的机器学习金融风险评估股票市场预测客户关系管理 机器学习在医疗领域的应用疾病预测…

【Linux】:常见指令理解(3)

17.grep指令 grep参考文档 语法&#xff1a; grep [选项] 搜寻字符串 文件 功能&#xff1a; 在文件中搜索字符串&#xff0c;将找到的行打印出来 常用选项&#xff1a; -i &#xff1a;忽略大小写的不同&#xff0c;所以大小写视为相同 -n &#xff1a;顺便输出行号 -v &…