多个Python包懒得import,那就一包搞定!

使用Python时,有的代码需要依赖多个框架或库者来完成,代码开头需要import多次,比如,

import pandas as pd
from pyspark import SparkContext
from openpyxl import load_workbook
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import LogisticRegression

本次分享一个Python工具pyforest,只需要import pyforest一行代码即可导入所有依赖的python包(机器上已安装过的),


pyforest安装

支持Python 3.6+之后的版本,因为pyforest开发者是py流行的字符串格式化机制f-strings的忠实粉丝。

pip install --upgrade pyforest -i https://pypi.tuna.tsinghua.edu.cn/simple

pyforest使用

以使用seaborn可视化为例,

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
'''
转载请标明来源!转载请标明来源!转载请标明来源!
@Time    :   2023年10月
@Author  :   公众号:pythonic生物人
@Contact :   公众号:pythonic生物人
@Desc    :   Demo for pyforest
'''#第1步:导入依赖包
import pyforest#第2步:设置绘图风格、文本字体
sns.set_theme()
mpl.rcParams['font.family'] = 'Songti SC'#第3步:数据读取
tips = pd.read_csv('./sns_data/tips.csv')#第4步:seaborn绘图
sns.relplot(data=tips,x="消费金额 ($)",y="小费金额 ($)",col="就餐时间",hue="是否吸烟",style="是否吸烟",size="一起就餐人数 (个)")

可以看到仅import pyforest一行代码就一次性导入了seaborn、pandas、matplotlib包,省略了重复使用import语句,即下面这些代码,

import seaborn as sns
import pandas as pd
import matplotlib as mpl

pyforest支持哪些包

pyforest覆盖99%以上主流Python Data Science libraries例如,import pandas as pd,import numpy as np,import seaborn as sns,import matplotlib.pyplot as plt, from sklearn.linear_model import LinearRegression等等。

注意:pyforest中导入的包遵循python社区默认的简称,如pandas>pd、seaborn>sns、matplotlib.pyplot>plt等等。

具体支持哪些包,可通过dir(pyforest)或者https://github.com/8080labs/pyforest/blob/master/src/pyforest/_imports.py查看,详细如下,

### Data Wrangling
pd = LazyImport("import pandas as pd")np = LazyImport("import numpy as np")dd = LazyImport("from dask import dataframe as dd")
SparkContext = LazyImport("from pyspark import SparkContext")load_workbook = LazyImport("from openpyxl import load_workbook")open_workbook = LazyImport("from xlrd import open_workbook")wr = LazyImport("import awswrangler as wr")### Data Visualization and Plotting
mpl = LazyImport("import matplotlib as mpl")
plt = LazyImport("import matplotlib.pyplot as plt")sns = LazyImport("import seaborn as sns")py = LazyImport("import plotly as py")
go = LazyImport("import plotly.graph_objs as go")
px = LazyImport("import plotly.express as px")dash = LazyImport("import dash")bokeh = LazyImport("import bokeh")alt = LazyImport("import altair as alt")pydot = LazyImport("import pydot")### Image processingcv2 = LazyImport("import cv2")
skimage = LazyImport("import skimage")
Image = LazyImport("from PIL import Image")
imutils = LazyImport("import imutils")# statistics
statistics = LazyImport("import statistics")
stats = LazyImport("from scipy import stats")
sm = LazyImport("import statsmodels.api as sm")### Time-Series Forecasting
fbprophet = LazyImport("import fbprophet")
Prophet = LazyImport("from fbprophet import Prophet")
ARIMA = LazyImport("from statsmodels.tsa.arima_model import ARIMA")### Machine Learning
sklearn = LazyImport("import sklearn")LinearRegression = LazyImport("from sklearn.linear_model import LinearRegression")
LogisticRegression = LazyImport("from sklearn.linear_model import LogisticRegression")
Lasso = LazyImport("from sklearn.linear_model import Lasso")
LassoCV = LazyImport("from sklearn.linear_model import LassoCV")
Ridge = LazyImport("from sklearn.linear_model import Ridge")
RidgeCV = LazyImport("from sklearn.linear_model import RidgeCV")
ElasticNet = LazyImport("from sklearn.linear_model import ElasticNet")
ElasticNetCV = LazyImport("from sklearn.linear_model import ElasticNetCV")
PolynomialFeatures = LazyImport("from sklearn.preprocessing import PolynomialFeatures")
StandardScaler = LazyImport("from sklearn.preprocessing import StandardScaler")
MinMaxScaler = LazyImport("from sklearn.preprocessing import MinMaxScaler")
RobustScaler = LazyImport("from sklearn.preprocessing import RobustScaler")OneHotEncoder = LazyImport("from sklearn.preprocessing import OneHotEncoder")
LabelEncoder = LazyImport("from sklearn.preprocessing import LabelEncoder")
TSNE = LazyImport("from sklearn.manifold import TSNE")
PCA = LazyImport("from sklearn.decomposition import PCA")
SimpleImputer = LazyImport("from sklearn.impute import SimpleImputer")
train_test_split = LazyImport("from sklearn.model_selection import train_test_split")
cross_val_score = LazyImport("from sklearn.model_selection import cross_val_score")
GridSearchCV = LazyImport("from sklearn.model_selection import GridSearchCV")
RandomizedSearchCV = LazyImport("from sklearn.model_selection import RandomizedSearchCV")
KFold = LazyImport("from sklearn.model_selection import KFold")
StratifiedKFold = LazyImport("from sklearn.model_selection import StratifiedKFold")svm = LazyImport("from sklearn import svm")
GradientBoostingClassifier = LazyImport("from sklearn.ensemble import GradientBoostingClassifier"
)
GradientBoostingRegressor = LazyImport("from sklearn.ensemble import GradientBoostingRegressor"
)
RandomForestClassifier = LazyImport("from sklearn.ensemble import RandomForestClassifier"
)
RandomForestRegressor = LazyImport("from sklearn.ensemble import RandomForestRegressor")TfidfVectorizer = LazyImport("from sklearn.feature_extraction.text import TfidfVectorizer"
)CountVectorizer = LazyImport("from sklearn.feature_extraction.text import CountVectorizer"
)metrics = LazyImport("from sklearn import metrics")sg = LazyImport("from scipy import signal as sg")# Clustering
KMeans = LazyImport ("from sklearn.cluster import KMeans")# Gradient Boosting Decision Tree
xgb = LazyImport("import xgboost as xgb")
lgb = LazyImport("import lightgbm as lgb")# TODO: add all the other most important sklearn objects
# TODO: add separate sections within machine learning viz. Classification, Regression, Error Functions, Clustering# Deep Learning
tf = LazyImport("import tensorflow as tf")
keras = LazyImport("import keras")
torch = LazyImport("import torch")
fastai = LazyImport("import fastai")# NLP
nltk = LazyImport("import nltk")
gensim = LazyImport("import gensim")
spacy = LazyImport("import spacy")
re = LazyImport("import re")
textblob = LazyImport("import textblob")### Helper
sys = LazyImport("import sys")
os = LazyImport("import os")
re = LazyImport("import re")
glob = LazyImport("import glob")
Path = LazyImport("from pathlib import Path")pickle = LazyImport("import pickle")dt = LazyImport("import datetime as dt")tqdm = LazyImport("import tqdm")

pyforest不支持的包怎么办

pyforest中导入的包遵循python社区默认的简称,如pandas>pd、seaborn>sns、matplotlib.pyplot>plt等等。

如果想个性化自己的包导入简称,可在~/.pyforest/user_imports.py中添加自己的个性化设置即可,例如,一般是import pandas as pd,想设置为import pandas as pd_test,

在 ~/.pyforest/user_imports.py中添加import pandas as pd_test保存即可。

同样当pyforest不包含自己的包时,也可以以上面同样的方法添加。

进一步学习:https://github.com/8080labs/pyforest


推荐阅读:
  • 10W字《R ggplot2可视化教程1.0》来了!

  • 详解Python列表推导式|迭代器|生成器|匿名函数

  • Jupyter Notebook的16个超棒插件!

  • 临床WGS/WES/Gene Panel/Single gene异同

  • 一图胜千言,超形象图解NumPy教程!

  • 那些神经网络可视化利器

  • R Graphics Cookbook中译教程

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/105707.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

bootz启动 Linux内核涉及do_bootm_linux 函数

一. bootz启动Linux uboot 启动Linux内核使用bootz命令。当然还有其它的启动命令,例如,bootm命令等等。 本文只分析 bootz命令启动 Linux内核的过程中涉及的几个重要函数。具体分析 do_bootm_linux函数执行过程。 本文继上一篇文章,地址…

燃气管网监测系统,让城市生命线更安全

万宾科技燃气管网监测系统,让城市生命线更安全 城市是现代社会的中心,拥有庞大的人口和各种基础设施,以满足人们的生活需求。城市基础设施包括供热,供水,管廊,河湖,建筑,排水&#x…

linux 服务器类型Apache配置https访问

一:查看服务器类型,下载相应的SSL证书 命令:netstat -anp | grep :80 httpd是Apache超文本传输协议(HTTP)服务器的主程序,所以下载Apache证书 二:将证书解压后复制到服务器上 三个文件:xxx.key xxx_publ…

草莓病害图像数据集(YOLO使用,train为655张照片和val为487张照片)

前言:所有图像和标签是一一对应,没有标签缺失 写了两个程序来分别检查train文件夹的图像和val文件夹图像是否有缺失标签,如果有,会直接打印出缺失标签的图像名字。也方便以后用户自己添加自己收集的图像数据后,核对图…

Linux shell编程学习笔记12:布尔运算和逻辑运算

Linux Shell 脚本编程和其他编程语言一样,支持算数、关系、布尔、逻辑、字符串、文件测试等多种运算。前面几节我们陆续研究了 Linux shell编程 中的 字符串运算、算术运算和关系运算,今天我们来研究 Linux shell编程中的的布尔运算、逻辑运算。 一、…

纯文本邮件发送:java

1.打开jdk的conf下的security文件的.security,找到并删除&#xff0c;权限问题建议复制文件修改后替换 jdk.tls.disabledAlgorithmsSSLv3, TLSv1, TLSv1.1, RC4, DES, MD5withRSA, \ DH keySize < 1024, EC keySize < 224, 3DES_EDE_CBC, anon, NULL 删除后的内容 然…

数据结构 - 4(栈和队列6000字详解)

一&#xff1a;栈 1.1 栈的概念 栈&#xff1a;一种特殊的线性表&#xff0c;其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一端称为栈顶&#xff0c;另一端称为栈底。栈中的数据元素遵守后进先出LIFO&#xff08;Last In First Out&#xff09;的原…

php如何查找地图距离

要在PHP中使用高德地图、百度地图或腾讯地图获取位置信息&#xff0c;您可以使用它们的相应API服务。以下是获取位置信息的一般步骤&#xff1a; 思路: 获取API密钥&#xff1a;首先&#xff0c;您需要注册并获取相应地图服务提供商的API密钥。这将允许您访问他们的API以获取位…

Python学习基础笔记六十九——文本2

二进制&#xff08;字节&#xff09;模式&#xff1a; 文本文件&#xff0c;纯文本文件就是保存文本字符串的文件&#xff0c;跟word还不一样&#xff0c;word是富文本文件。 其实就文件存储的底层来说&#xff0c;不管什么类型的文件&#xff08;文本、视频、图片、word、Ex…

rsync 备份工具(附rsync+inotify 实时同步部署实例)

rsync 备份工具(附rsyncinotify 实时同步部署实例&#xff09; 1、rsync概述1.1关于rsync1.2rsync 的特点1.3工作原理 2、rsync相关命令2.1基本格式和常用选项2.2启动和关闭rsync服务2.3下行同步基本格式2.4上行同步基本格式2.5免交互2.5.1指定密码文件2.5.2rsync-daemon方式2.…

2.9 深入GPU硬件架构及运行机制

五、GPU技术要点 1.SMID和SIMT SIMD&#xff08;Single Instruction Multiple Data&#xff09;是单指令多数据&#xff0c;在GPU的ALU&#xff08;在Core内&#xff09;单元内&#xff0c;一条指令可以处理多维向量&#xff08;一般是4D&#xff09;的数据。比如&#xff0c…

宅在家里也能干的副业,每天挣60—300元,人人可做

想在家搞副业&#xff0c;每天挣60-300元&#xff0c;大家觉得难吗&#xff1f;我告诉你&#xff0c;一点也不难。找对路子&#xff0c;足不出户也能搞钱。今天我就给大家分享一下三个网上靠谱的副业&#xff0c;门槛低上手快&#xff0c;只需一部手机&#xff0c;每天利用碎片…

Hazelcast系列(三):hazelcast集成(服务器/客户端)

系列文章 Hazelcast系列(一)&#xff1a;初识hazelcast Hazelcast系列(二)&#xff1a;hazelcast集成&#xff08;嵌入式&#xff09; Hazelcast系列(三)&#xff1a;hazelcast集成&#xff08;服务器/客户端&#xff09; Hazelcast系列(四)&#xff1a;hazelcast管理中心 …

动态规划:918. 环形子数组的最大和

个人主页 &#xff1a; 个人主页 个人专栏 &#xff1a; 《数据结构》 《C语言》《C》《算法》 文章目录 前言一、题目解析二、解题思路解题思路状态表示状态转移方程初始化填表顺序返回值 三、代码实现总结 前言 本篇文章仅是作为小白的我的一些理解&#xff0c;&#xff0c;…

docker安装skyWalking笔记

确保安装了docker和docker-compose sudo docker -v Docker version 20.10.12, build 20.10.12-0ubuntu4 sudo docker-compose -v docker-compose version 1.29.2, build unknown 编写docker-compose.yml version: "3.1" services: skywalking-oap:image: apach…

ELF和静态链接:为什么程序无法同时在Linux和Windows下运行?

目录 疑问 编译、链接和装载&#xff1a;拆解程序执行 ELF 格式和链接&#xff1a;理解链接过程 小结 疑问 既然我们的程序最终都被变成了一条条机器码去执行&#xff0c;那为什么同一个程序&#xff0c;在同一台计算机上&#xff0c;在 Linux 下可以运行&#xff0c;而在…

《机器学习》第5章 神经网络

文章目录 5.1 神经元模型5.2 感知机与多层网络5.3 误差逆传播算法5.4 全局最小与局部最小5.5 其他常见神经网络RBF网络ART网络SOM网络级联相关网络Elman网络Boltzmann机 5.6 深度学习 5.1 神经元模型 神经网络是由具有适应性的简单单元组成的广泛并行互连的网络&#xff0c;它…

如何做好数据分析中的数据可视化?

数据可视化在数据分析中扮演着重要的角色&#xff0c;它帮助我们更好地理解和传达数据的特征、趋势和规律。以下是关于如何做好数据分析中的数据可视化的详细介绍。 一、准备工作 1. 理解数据 在进行数据可视化之前&#xff0c;首先要对数据有一个清晰的理解。了解数据的来源…

Yakit工具篇:简介和安装使用

简介(来自官方文档) 基于安全融合的理念&#xff0c;Yaklang.io 团队研发出了安全领域垂直语言Yaklang&#xff0c;对于一些无法原生集成在Yak平台中的产品/工具&#xff0c;利用Yaklang可以重新编写 他们的“高质量替代”。对于一些生态完整且认可度较高的产品&#xff0c;Y…

JavaScript 通过数组对JSON key字段进行排序

这里我以vue为例 不过json排序用的js方式 任何前端项目都可以通过js完成 我们组件代码现在是这样的 <template><div><div v-for "item in navCateList" :key "item.id">{{ item.name }}</div></div> </template>&…