相似性搜索:第 3 部分--混合倒排文件索引和产品量化

接续前文:相似性搜索:第 2 部分:产品量化 

SImilarity 搜索是一个问题,给定一个查询的目标是在所有数据库文档中找到与其最相似的文档。

一、介绍

        在数据科学中,相似性搜索经常出现在NLP领域,搜索引擎或推荐系统中,其中需要检索最相关的文档或项目以进行查询。在大量数据中,有各种不同的方法可以提高搜索性能。

        在本系列的前两部分中,我们讨论了信息检索中的两种基本算法:倒排文件索引产品量化。它们都优化了搜索性能,但专注于不同的方面:前者加快了搜索速度,而后者将向量压缩为更小、节省内存的表示形式。

        由于两种算法都关注不同的方面,因此自然出现的问题是是否可以将这两种算法合并为一种新的算法。

        在本文中,我们将结合这两种方法的优点来生成一种快速且内存高效的算法。作为参考,大多数讨论的想法将基于本文。

        在深入研究细节之前,有必要了解残差向量是什么,并对它们的有用特性有一个简单的直觉。稍后我们将在设计算法时使用它们。

三、残差向量

        假设执行了一个聚类算法,它产生了几个聚类。每个聚类都有一个质心和与之关联的点。残差是点(向量)与其质心的偏移量。基本上,要找到特定向量的残差,必须从其质心中减去该向量。

        如果聚类是通过 k 均值算法构建的,则聚类质心是属于该聚类的所有点的平均值。因此,从任何点找到残差等效于从中减去聚类的平均值。通过从属于特定聚类的所有点中减去平均值,这些点将以 0 为中心。

左侧显示了原始点聚类。然后从所有聚类点中减去聚类质心。生成的残差向量显示在右侧。

我们可以观察到一个有用的事实:

用残差替换原始向量不会改变它们之间的相对位置。

也就是说,向量之间的距离始终保持不变。让我们简单地看下面的两个等式。

减去平均值不会改变相对距离

        第一个方程是一对向量之间的欧几里得距离公式。在第二个方程中,从两个向量中减去聚类平均值。我们可以看到平均项只是抵消了 — 整个表达式与第一个方程中的欧几里得距离相同!

我们使用 L2 度量(欧几里得距离)的公式证明了这一说法。请务必记住,此规则可能不适用于其他指标。

        因此,如果对于给定查询的目标是查找最近的邻居,则可以仅从查询中减去聚类均值,然后继续执行残差中的正常搜索过程。

从查询中减去平均值不会改变其与其他向量的相对位置

        现在让我们看下图中的另一个示例,其中包含两个聚类,其中每个聚类的向量的残差分别计算。

从聚类的每个向量中减去相应质心的平均值将使所有数据集向量以 0 为中心

        这是一个有益的意见,今后将加以利用。此外,对于给定的查询,我们可以计算所有聚类的查询残差。查询残差允许我们计算到聚类原始残差的距离。

        从每个聚类中减去平均值后,所有点都以 0 为中心。从查询和查询残差到相应聚类的其他点的相对位置不会更改。

四、训练

        在考虑了上一节中有用的观察结果后,我们可以开始设计算法了。

        给定一个向量数据库,构造一个倒排文件索引,将向量集划分为 n 个 Voronoi 分区,从而在推理过程中缩小搜索范围。

        在每个 Voronoi 分区内,从每个向量中减去质心的坐标。结果,来自所有分区的向量彼此更靠近并以 0 为中心。此时,不需要原始向量,因为我们存储它们的残差。

        之后,乘积量化算法在所有分区的向量上运行。

        重要方面产品量化不会为每个分区单独执行 - 这将是低效的,因为分区的数量通常往往很高,这可能会导致存储所有码本所需的大量内存。相反,该算法将同时对所有分区中的所有残差执行

        实际上,现在每个子空间都包含来自不同Voronoi分区的子向量。然后,对于每个子空间,执行聚类算法,并像往常一样构建 k 个聚类及其质心。

训练过程

        用残差替换载体的重要性是什么?如果向量没有被它们的残差替换,那么每个子空间将包含更多不同的子向量(因为子空间将存储来自不同非相交Voronoi分区的子向量,这些子向量在空间中可能彼此相距很远)。现在,来自不同分区的向量(残差)彼此重叠。由于现在每个子空间的种类较少,因此需要更少的复制值来有效表示向量。换句话说:

使用与之前使用的 PQ 代码长度相同的代码,矢量可以更准确地表示,因为它们具有较小的方差。

五、推理

对于给定的查询,可以找到 Voronoi 分区的 k 个最近的质心。这些区域内的所有点都被视为候选点。由于原始向量最初被每个 Voronoi 区域中的残差替换,因此还需要计算查询向量的残差。在这种情况下,需要为每个 Voronoi 分区单独计算查询残差(因为每个区域都有不同的质心)。只有来自所选 Voronoi 分区的残差才会归候选人所有。

然后将查询残差拆分为子向量。与原始乘积量化算法一样,对于每个子空间,计算包含从子空间质心到查询子向量的距离的距离矩阵 d。必须记住,每个Voronoi分区的查询残差是不同的。基本上,这意味着需要为每个查询残差单独计算距离矩阵 d。这是所需优化的计算价格。

最后,对部分距离进行总结,就像之前在乘积量化算法中所做的那样。

5.1 排序结果

        计算完所有距离后,需要选择 k 个最近邻。为了有效地做到这一点,作者建议维护一个MaxHeap数据结构。它的容量有限,为k ,每一步,它存储k电流最小距离。每当计算新距离时,仅当计算的值小于 MaxHeap 中的最大值时,才会将其值添加到 MaxHeap 中。计算完所有距离后,查询的答案已经存储在 MaxHeap 中。使用MaxHeap的优点是其快速的构建时间,即O(n)。

推理过程

六、性能

        该算法利用倒排文件索引和乘积量化。根据推理期间 Voronoi 分区探测的数量,需要计算相同数量的子向量到质心矩阵 d 并将其存储在内存中。这可能看起来像是一个缺点,但将其与整体优势相比,这是一个相当不错的权衡。

该算法从倒排文件索引继承了良好的搜索速度,从产品量化中继承了压缩效率

七、费斯实施

Faiss(Facebook AI Search Similarity)是一个用C++编写的Python库,用于优化的相似性搜索。该库提供了不同类型的索引,这些索引是用于有效存储数据和执行查询的数据结构。

根据 Faiss 文档中的信息,我们将了解如何将倒置文件和产品量化索引组合在一起以形成新的索引。

Faiss 在 IndexIVFPQ 类中实现了所描述的算法,该类接受以下参数:

  • 量化器:指定如何计算向量之间的距离。
  • D:数据维度。
  • nlist:Voronoi 分区的数量。
  • M:子空间的数量。
  • nbits:对单个集群 ID 进行编码所需的位数。这意味着单个子空间中的总聚类数将等于 k = 2^nbits

        此外,还可以调整 nprobe 属性,该属性指定在推理过程中必须使用多少个 Voronoi 分区来搜索候选者。更改此参数不需要重新训练。

费斯对IndexIVFPQ的实现

存储单个向量所需的内存与原始产品量化方法相同,只是现在我们再添加 8 个字节以在倒排文件索引中存储有关向量的信息。

八、结论

利用上一篇文章部分中的知识,我们演练了实现高内存压缩和加速搜索速度的最先进算法的实现。该算法在处理大量数据时广泛用于信息检索系统。

资源

  • 最近搜索的产品量化
  • 费斯文档
  • 费斯存储库
  • 费斯指数摘要

除非另有说明,否则所有图片均由作者提供。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/105402.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【MST】 CF1108 F

Problem - 1108F - Codeforces 题意 思路 先看样例 这里的 MST,是把边排序之后合并至权值为3 权值为3的两条边,选其中一条即可,但是不能两条都选,这样会形成环 这启示我们,我们要操作的是和Kruskal的最后一条边权值…

【MySql】6- 实践篇(四)

文章目录 1. 为何SQL语句逻辑相同,性能却差异巨大1.1 性能差异大的SQL语句问题1.1.1 案例一:条件字段函数操作1.1.2 案例二:隐式类型转换1.1.3 案例三:隐式字符编码转换 2. 为何只查询一行的SQL执行很慢2.1 场景一:查询长时间不返回2.1.1 等MDL锁2.1.2 等 flush2.1.…

【每日一题】只出现一次的数字 II

文章目录 Tag题目来源题目解读解题思路方法一:位运算 写在最后 Tag 【位运算】【数组】【2023-10-15】 题目来源 137. 只出现一次的数字 II 题目解读 找出数组中仅出现一次的数字,其余数字仅出现三次。要求线性时间复杂度求解。 解题思路 本题的朴素…

Java类加载过程

一、前言 我们都知道计算机的底层逻辑都是0和1的编码,当然除了现在所研究的量子计算除外。那么我们在计算机所做的一切操作,底层原理是不是都可以翻译到0和1呢。如果刨根问底的话,可以这么说,当然0和1的表示也属于逻辑门电路电的…

蓝牙资讯|2024年智能家居新趋势,蓝牙助力智能家居发展

2024年将迎来变革,智能家居趋势不仅会影响我们的生活空间,还会提高我们的生活质量,让我们有更多时间享受属于自己的时光。 2024年智能家居新趋势 趋势一:多功能科技 2024年预示着多功能技术的趋势,创新将成为焦点。混…

Spring framework Day14:配置类的Lite模式和Full模式

前言 Lite模式和Full模式是指在软件或系统中的不同配置选项。一般来说,Lite模式是指较为简洁、轻量级的配置,而Full模式则是指更加完整、功能更丰富的配置。 Lite模式通常会去除一些不常用或占用资源较多的功能,以提高系统的运行效率和响应…

计算机算法分析与设计(9)---0-1背包和完全背包问题(含C++代码)

文章目录 一、0-1背包概述1.1 问题描述1.2 算法思想 二、0-1背包代码2.1 题目描述2.2 代码编写 三、完全背包概述四、完全背包代码4.1 题目描述4.1 代码编写4.2 代码优化 一、0-1背包概述 1.1 问题描述 1. 0-1背包问题:给定 n n n 种物品和一背包。物品 i i i 的…

【vue3】实现数据响应式(ref、shallowRef、trigger、reactive、shallowReactive、toRef、toRefs)

一、ref、shallowRef、trigger ref支持所有类型 可以粗略理解为 ref shallowRef triggerRef 1、通过ref获取dom元素 <p ref"_ref">这是ref获取dom元素</p>import {ref,shallowRef, triggerRef} from vueconst _ref ref()console.log(_ref.value?.i…

redis基本数据类型

一) 字符串(String) String是redis最基本的类型&#xff0c;value最大是512M&#xff0c;String类型是二进制安全的&#xff0c;可以包含任何数据&#xff0c;如jpg图片或者序列化的对象 1 使用场景 1) 缓存&#xff1a;redis作为缓存层&#xff0c;mysql做持久化层&#xff0…

AC修炼计划(AtCoder Regular Contest 166)

传送门&#xff1a;AtCoder Regular Contest 166 - AtCoder 一直修炼cf&#xff0c;觉得遇到了瓶颈了&#xff0c;所以想在atcode上寻求一些突破&#xff0c;今天本来想尝试vp AtCoder Regular Contest 166&#xff0c;但结局本不是很好&#xff0c;被卡了半天&#xff0c;止步…

力扣第538题 把二叉搜索树转换为累加树 c++

题目 538. 把二叉搜索树转换为累加树 中等 相关标签 树 深度优先搜索 二叉搜索树 二叉树 给出二叉 搜索 树的根节点&#xff0c;该树的节点值各不相同&#xff0c;请你将其转换为累加树&#xff08;Greater Sum Tree&#xff09;&#xff0c;使每个节点 node 的新值…

C语言 sizeof

定义 sizeof是C语言的一种单目操作符。它并不是函数。sizeof操作符以字节形式给出了其操作数的存储大小。操作数可以是一个表达式或括在括号内的类型名。操作数的存储大小由操作数的类型决定。 使用方法 用于数据类型 sizeof(type) 数据类型必须用括号括住 用于变量 size…

ubuntu20.04 vins-fusion 运行记录

过程记录 环境&#xff1a; ubuntu20.04 opencv4.2.0(此次使用) 3.3.1(其他程序在使用) vins-fusion vision_opencv 1.下载VINS-Fusion和cv_bridge&#xff0c;并进行修改&#xff0c;方便使用opencv4.2.0和对应的cv_bridge。 mkdir -p ~/catkin_ws/src cd ~/catkin_ws/src…

C++数位动态规划算法:统计整数数目

题目 给你两个数字字符串 num1 和 num2 &#xff0c;以及两个整数 max_sum 和 min_sum 。如果一个整数 x 满足以下条件&#xff0c;我们称它是一个好整数&#xff1a; num1 < x < num2 min_sum < digit_sum(x) < max_sum. 请你返回好整数的数目。答案可能很大&…

【Linux】基本指令-入门级文件操作(二)

目录 基本指令 7 cp指令&#xff08;重要&#xff09; 8 mv指令&#xff08;重要&#xff09; 9 nano指令 10 cat指令 11 echo指令与重定向&#xff08;重要&#xff09; 12 more指令 13 less指令 基本指令 7 cp指令&#xff08;重要&#xff09; 功能&#xff1a;复…

redis如何实现缓存预热

在业务系统中&#xff0c;我们需要在程序启动的时候加载一些常用的数据到内存数据库中&#xff0c;从而减少业务数据库的压力。这就是我们常提到的缓存预热。官方一点的解释是这样的&#xff1a; 缓存预热是一种在程序启动或缓存失效之后&#xff0c;主动将热点数据加载到缓存中…

注意力屏蔽(Attention Masking)在Transformer中的作用 【gpt学习记录】

填充遮挡&#xff08;Padding Masking&#xff09;&#xff1a; 未来遮挡&#xff08;Future Masking&#xff09;&#xff1a;

09. 机器学习- 逻辑回归

文章目录 线性回归回顾逻辑回归 Hi&#xff0c;你好。我是茶桁。 上一节课&#xff0c;在结尾的时候咱们预约了这节课一开始对上一节课的内容进行一个回顾&#xff0c;并且预告了这节课内容主要是「逻辑回归」&#xff0c;那我们现在就开始吧。 线性回归回顾 在上一节课中&a…

Go语言入门心法(一)

Go语言入门心法(一) Go语言入门心法(二): 结构体 Go语言入门心法(三): 接口 一: go语言中变量认知 go语言中变量的定义: &#xff08;要想飞|先会走&#xff09;||&#xff08;翻身仗|抹遗憾 &#xff09; |&#xff08;二八定律&#xff09;(先量变)|(再质变)||&#x…

【Matlab】二维绘图函数汇总

目录 1. plot() 2. subplot() 3. fplot() 4. polarplot() 1. plot() plot() 函数是 Matlab 中最常用的绘图函数&#xff0c;用于在平面直角坐标系中绘制直线或曲线。 用法&#xff1a; plot(X,Y) plot(X,Y,LineSpec) plot(X1,Y1, ... ,Xn,Yn) 说明&#xff1a; plot(X,Y) …