竞赛选题 深度学习OCR中文识别 - opencv python

文章目录

  • 0 前言
  • 1 课题背景
  • 2 实现效果
  • 3 文本区域检测网络-CTPN
  • 4 文本识别网络-CRNN
  • 5 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 **基于深度学习OCR中文识别系统 **

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 课题背景

在日常生产生活中有大量的文档资料以图片、PDF的方式留存,随着时间推移 往往难以检索和归类 ,文字识别(Optical Character
Recognition,OCR )是将图片、文档影像上的文字内容快速识别成为可编辑的文本的技术。

高性能文档OCR识别系统是基于深度学习技术,综合运用Tensorflow、CNN、Caffe
等多种深度学习训练框架,基于千万级大规模文字样本集训练完成的OCR引擎,与传统的模式识别的技术相比,深度学习技术支持更低质量的分辨率、抗干扰能力更强、适用的场景更复杂,文字的识别率更高。

本项目基于Tensorflow、keras/pytorch实现对自然场景的文字检测及OCR中文文字识别。

2 实现效果

公式检测
在这里插入图片描述
纯文字识别

在这里插入图片描述

3 文本区域检测网络-CTPN

对于复杂场景的文字识别,首先要定位文字的位置,即文字检测。

简介
CTPN是在ECCV
2016提出的一种文字检测算法。CTPN结合CNN与LSTM深度网络,能有效的检测出复杂场景的横向分布的文字,效果如图1,是目前比较好的文字检测算法。由于CTPN是从Faster
RCNN改进而来,本文默认读者熟悉CNN原理和Faster RCNN网络结构。
在这里插入图片描述
相关代码

def main(argv):pycaffe_dir = os.path.dirname(__file__)parser = argparse.ArgumentParser()# Required arguments: input and output.parser.add_argument("input_file",help="Input txt/csv filename. If .txt, must be list of filenames.\If .csv, must be comma-separated file with header\'filename, xmin, ymin, xmax, ymax'")parser.add_argument("output_file",help="Output h5/csv filename. Format depends on extension.")# Optional arguments.parser.add_argument("--model_def",default=os.path.join(pycaffe_dir,"../models/bvlc_reference_caffenet/deploy.prototxt.prototxt"),help="Model definition file.")parser.add_argument("--pretrained_model",default=os.path.join(pycaffe_dir,"../models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel"),help="Trained model weights file.")parser.add_argument("--crop_mode",default="selective_search",choices=CROP_MODES,help="How to generate windows for detection.")parser.add_argument("--gpu",action='store_true',help="Switch for gpu computation.")parser.add_argument("--mean_file",default=os.path.join(pycaffe_dir,'caffe/imagenet/ilsvrc_2012_mean.npy'),help="Data set image mean of H x W x K dimensions (numpy array). " +"Set to '' for no mean subtraction.")parser.add_argument("--input_scale",type=float,help="Multiply input features by this scale to finish preprocessing.")parser.add_argument("--raw_scale",type=float,default=255.0,help="Multiply raw input by this scale before preprocessing.")parser.add_argument("--channel_swap",default='2,1,0',help="Order to permute input channels. The default converts " +"RGB -> BGR since BGR is the Caffe default by way of OpenCV.")parser.add_argument("--context_pad",type=int,default='16',help="Amount of surrounding context to collect in input window.")args = parser.parse_args()mean, channel_swap = None, Noneif args.mean_file:mean = np.load(args.mean_file)if mean.shape[1:] != (1, 1):mean = mean.mean(1).mean(1)if args.channel_swap:channel_swap = [int(s) for s in args.channel_swap.split(',')]if args.gpu:caffe.set_mode_gpu()print("GPU mode")else:caffe.set_mode_cpu()print("CPU mode")# Make detector.detector = caffe.Detector(args.model_def, args.pretrained_model, mean=mean,input_scale=args.input_scale, raw_scale=args.raw_scale,channel_swap=channel_swap,context_pad=args.context_pad)# Load input.t = time.time()print("Loading input...")if args.input_file.lower().endswith('txt'):with open(args.input_file) as f:inputs = [_.strip() for _ in f.readlines()]elif args.input_file.lower().endswith('csv'):inputs = pd.read_csv(args.input_file, sep=',', dtype={'filename': str})inputs.set_index('filename', inplace=True)else:raise Exception("Unknown input file type: not in txt or csv.")# Detect.if args.crop_mode == 'list':# Unpack sequence of (image filename, windows).images_windows = [(ix, inputs.iloc[np.where(inputs.index == ix)][COORD_COLS].values)for ix in inputs.index.unique()]detections = detector.detect_windows(images_windows)else:detections = detector.detect_selective_search(inputs)print("Processed {} windows in {:.3f} s.".format(len(detections),time.time() - t))# Collect into dataframe with labeled fields.df = pd.DataFrame(detections)df.set_index('filename', inplace=True)df[COORD_COLS] = pd.DataFrame(data=np.vstack(df['window']), index=df.index, columns=COORD_COLS)del(df['window'])# Save results.t = time.time()if args.output_file.lower().endswith('csv'):# csv# Enumerate the class probabilities.class_cols = ['class{}'.format(x) for x in range(NUM_OUTPUT)]df[class_cols] = pd.DataFrame(data=np.vstack(df['feat']), index=df.index, columns=class_cols)df.to_csv(args.output_file, cols=COORD_COLS + class_cols)else:# h5df.to_hdf(args.output_file, 'df', mode='w')print("Saved to {} in {:.3f} s.".format(args.output_file,time.time() - t))

CTPN网络结构
在这里插入图片描述

4 文本识别网络-CRNN

CRNN 介绍
CRNN 全称为 Convolutional Recurrent Neural Network,主要用于端到端地对不定长的文本序列进行识别,不用

图来自文章:一文读懂CRNN+CTC文字识别

整个CRNN网络结构包含三部分,从下到上依次为:

  1. CNN(卷积层),使用深度CNN,对输入图像提取特征,得到特征图;
  2. RNN(循环层),使用双向RNN(BLSTM)对特征序列进行预测,对序列中的每个特征向量进行学习,并输出预测标签(真实值)分布;
  3. CTC loss(转录层),使用 CTC 损失,把从循环层获取的一系列标签分布转换成最终的标签序列。

CNN
卷积层的结构图:
在这里插入图片描述

这里有一个很精彩的改动,一共有四个最大池化层,但是最后两个池化层的窗口尺寸由 2x2 改为 1x2,也就是图片的高度减半了四次(除以 2^4
),而宽度则只减半了两次(除以2^2),这是因为文本图像多数都是高较小而宽较长,所以其feature
map也是这种高小宽长的矩形形状,如果使用1×2的池化窗口可以尽量保证不丢失在宽度方向的信息,更适合英文字母识别(比如区分i和l)。

CRNN 还引入了BatchNormalization模块,加速模型收敛,缩短训练过程。

输入图像为灰度图像(单通道);高度为32,这是固定的,图片通过 CNN
后,高度就变为1,这点很重要;宽度为160,宽度也可以为其他的值,但需要统一,所以输入CNN的数据尺寸为 (channel, height,
width)=(1, 32, 160)。

CNN的输出尺寸为 (512, 1, 40)。即 CNN 最后得到512个特征图,每个特征图的高度为1,宽度为40。

Map-to-Sequence
我们是不能直接把 CNN 得到的特征图送入 RNN 进行训练的,需要进行一些调整,根据特征图提取 RNN 需要的特征向量序列。

在这里插入图片描述

现在需要从 CNN 模型产生的特征图中提取特征向量序列,每一个特征向量(如上图中的一个红色框)在特征图上按列从左到右生成,每一列包含512维特征,这意味着第
i 个特征向量是所有的特征图第 i 列像素的连接,这些特征向量就构成一个序列。

由于卷积层,最大池化层和激活函数在局部区域上执行,因此它们是平移不变的。因此,特征图的每列(即一个特征向量)对应于原始图像的一个矩形区域(称为感受野),并且这些矩形区域与特征图上从左到右的相应列具有相同的顺序。特征序列中的每个向量关联一个感受野。

如下图所示:
在这里插入图片描述

这些特征向量序列就作为循环层的输入,每个特征向量作为 RNN 在一个时间步(time step)的输入。

RNN
因为 RNN 有梯度消失的问题,不能获取更多上下文信息,所以 CRNN 中使用的是 LSTM,LSTM
的特殊设计允许它捕获长距离依赖,不了解的话可以看一下这篇文章 对RNN和LSTM的理解。

LSTM
是单向的,它只使用过去的信息。然而,在基于图像的序列中,两个方向的上下文是相互有用且互补的。将两个LSTM,一个向前和一个向后组合到一个双向LSTM中。此外,可以堆叠多层双向LSTM,深层结构允许比浅层抽象更高层次的抽象。

这里采用的是两层各256单元的双向 LSTM 网络:
在这里插入图片描述

通过上面一步,我们得到了40个特征向量,每个特征向量长度为512,在 LSTM 中一个时间步就传入一个特征向量进行分

我们知道一个特征向量就相当于原图中的一个小矩形区域,RNN
的目标就是预测这个矩形区域为哪个字符,即根据输入的特征向量,进行预测,得到所有字符的softmax概率分布,这是一个长度为字符类别数的向量,作为CTC层的输入。

因为每个时间步都会有一个输入特征向量 x^T ,输出一个所有字符的概率分布 y^T ,所以输出为 40 个长度为字符类别数的向量构成的后验概率矩阵。

如下图所示:
在这里插入图片描述

然后将这个后验概率矩阵传入转录层。
CTC loss
这算是 CRNN 最难的地方,这一层为转录层,转录是将 RNN
对每个特征向量所做的预测转换成标签序列的过程。数学上,转录是根据每帧预测找到具有最高概率组合的标签序列。

端到端OCR识别的难点在于怎么处理不定长序列对齐的问题!OCR可建模为时序依赖的文本图像问题,然后使用CTC(Connectionist Temporal
Classification, CTC)的损失函数来对 CNN 和 RNN 进行端到端的联合训练。

相关代码

    def inference(self, inputdata, name, reuse=False):"""Main routine to construct the network:param inputdata::param name::param reuse::return:"""with tf.variable_scope(name_or_scope=name, reuse=reuse):# centerlized datainputdata = tf.divide(inputdata, 255.0)#1.特征提取阶段# first apply the cnn feature extraction stagecnn_out = self._feature_sequence_extraction(inputdata=inputdata, name='feature_extraction_module')#2.第二步,  batch*1*25*512  变成 batch * 25 * 512# second apply the map to sequence stagesequence = self._map_to_sequence(inputdata=cnn_out, name='map_to_sequence_module')#第三步,应用序列标签阶段# third apply the sequence label stage# net_out width, batch, n_classes# raw_pred   width, batch, 1net_out, raw_pred = self._sequence_label(inputdata=sequence, name='sequence_rnn_module')return net_out

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/105274.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【LeetCode刷题(数据结构)】:另一颗树的子树

给你两棵二叉树 root 和 subRoot 检验 root 中是否包含和 subRoot 具有相同结构和节点值的子树。如果存在,返回 true ;否则,返回 false 二叉树 tree 的一棵子树包括 tree 的某个节点和这个节点的所有后代节点。tree 也可以看做它自身的一棵子…

数据库安全-H2 databaseElasticsearchCouchDBInfluxdb漏洞复现

目录 数据库安全-H2 database&Elasticsearch&CouchDB&Influxdb 复现influxdb-未授权访问-jwt 验证H2database-未授权访问-配置不当CouchDB-权限绕过配合 RCE-漏洞CouchDB 垂直权限绕过Couchdb 任意命令执行 RCE ElasticSearch-文件写入&RCE-漏洞Elasticsearch写…

CentOS 挂载新磁盘以及磁盘扩容操作教程

1.搭载新加磁盘 # 查看磁盘 fdisk -l #新盘(/dev/sdb)创建分区 #虚拟机 fdisk /dev/sdb #阿里云 fdisk /dev/vdb #创建/dev/sdb1为新的PV(物理卷) 【创建物理卷命令】 #虚拟机 pvcreate /dev/sdb1 #阿里云 pvcreate /dev/vdb1 查…

【C语言】通讯录的简单实现

通讯录的内容 contect.h #pragma once // 包含头文件 #include <stdio.h> #include <string.h> #include <assert.h> #include <stdlib.h>// 使用枚举常量定义功能 enum Function {quit, // 注意这是逗号&#xff0c;不是分号save,addition,delete,s…

27 mysql 组合索引 的存储以及使用

前言 这里来看一下 mysql 中索引的 增删改查 查询在前面的系列文章中都有使用到 这里 来看一下 增删改 的相关实现 索引记录 和 数据记录 的处理方式是一致的 这里来看一下 组合索引 的相关, 以及 特性 组合索引的存储以及使用 创建数据表如下, 除了主键之外, 创建了…

Spring Boot 生成二维码

效果图 1.maven依赖 <dependency> <groupId>com.google.zxing</groupId> <artifactId>javase</artifactId>

光电柴微电网日前调度报告

摘要 微电网是目前国内外应用较为广泛的一种绿色可再生能源&#xff0c;近几年我国微电网产业的发展十分迅速。然后&#xff0c;越来越多的微电网系统建立并网&#xff0c;微电网产生的电能受外界因素影响较大&#xff0c;具有一定的随机性和波动性&#xff0c;给并网后的电力系…

Sketch macOS 支持m1 m2 Sketch 2023最新中文版

SketchUp Pro 2023是一款功能强大的三维建模软件&#xff0c;适用于建筑设计师、室内设计师、工程师和其他创意专业人士。以下是SketchUp Pro 2023的一些主要特点和功能&#xff1a; 三维建模&#xff1a;SketchUp Pro 2023允许用户以直观的方式创建三维模型。通过简单的绘图工…

Swagger使用

Swagger 简介 号称世界上最流行的API框架&#xff1b;Restful API 文档在线生成工具 —> API文档与API定义同步更新直接运行&#xff0c;可以在线测试 API 接口&#xff1b;支持各种语言&#xff1b;&#xff08;Java&#xff0c;PHP…&#xff09; 官网 Spring Boot 集…

实施 DevSecOps 最佳实践

DevSecOps 是一个框架&#xff0c;它将开发 (Dev)、IT 运营 (Ops) 和安全 (Sec) 流程的实践融合到一个简化的流程中。使用这种方法&#xff0c;DevSecOps 团队能够确保将安全性集成到软件开发生命周期中&#xff0c;确保以“安全第一”的心态构建、部署和维护软件。在本教程中&…

【QT】Ubuntu 搭建 QT 环境(图形化界面安装)

介于直接使用源码编译安装 QT 耗时较长&#xff0c;而且需要手动编写脚本进行编译&#xff0c;难度较大&#xff0c;这里选择直接以图形化界面的方式安装 QT 。 目录 1、下载 QT 安装包 2、安装 QT 3、添加环境变量 4、cmake 引入 QT 库 5、Failed to find “GL/gl.h“ in…

采用 guidance 提高大模型输出的可靠性和稳定性

本文首发于博客 LLM 应用开发实践 在复杂的 LLM 应用开发中&#xff0c;特别涉及流程编排和多次 LLM 调用时&#xff0c;每次的 Prompt 设计都取决于前一个步骤的大模型输出。如何避免大语言模型的"胡说八道"&#xff0c;以提高大语言模型输出的可靠性和稳定性&#…

[python] pytest

在写一个项目前, 可以先编写测试模块 测试模块中包含了一个个最小的功能 当每一个功能都完善正确时 再将这些功能转换成项目运行的功能 多个项目运行的功能就组成了一个模块 多个模块就组成了一个项目服务 pytest 是一个 Python 测试框架&#xff0c;它提供了简单易用的语…

竞赛选题 深度学习YOLOv5车辆颜色识别检测 - python opencv

文章目录 1 前言2 实现效果3 CNN卷积神经网络4 Yolov56 数据集处理及模型训练5 最后 1 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; **基于深度学习YOLOv5车辆颜色识别检测 ** 该项目较为新颖&#xff0c;适合作为竞赛课题方向&#xff0…

React如何优化减少组件间的重新Render

目前写了不少React的项目&#xff0c;发现React有些特点更灵活和注重细节&#xff0c;很多东西需要有一定的内功才能掌握好&#xff1b;比如在项目中常常遇到的组件重复渲染&#xff0c;有时候组件重复渲染如果内容是纯文本&#xff0c;不打印日志就不容易发现重复渲染了&#…

每日一题 136. 只出现一次的数字(简单,位运算)

异或运算性质&#xff0c;两个相等的数作异或运算得零&#xff0c;任何数与零作异或运算保持不变 所以整个数组的异或和就是答案 class Solution:def singleNumber(self, nums: List[int]) -> int:ans 0for i in nums:ans ^ ireturn ans一行代码&#xff0c;reduce作累积操…

亚马逊测评安全吗?

测评可以说是卖家非常宝贵的财富&#xff0c;通过测评和广告相结合&#xff0c;可以快速有效的提升店铺的产品销量&#xff0c;提高转化&#xff0c;提升listing权重&#xff0c;但现在很多卖家找真人测评补单后店铺出现问题导致大家对测评的安全性感到担忧&#xff0c;因为真人…

List 模拟实现

前言 本文将会向你介绍如何模拟实现list、iterator迭代器 模拟实现 引入 迭代器是一种用于访问容器中元素的对象&#xff0c;它封装了对容器中元素的访问方式。迭代器提供了一组操作接口&#xff0c;可以让我们通过迭代器对象来遍历容器中的元素。&#xff08;iterator迭代器…

Lua调用C#类

先创建一个Main脚本作为主入口&#xff0c;挂载到摄像机上 public class Main : MonoBehaviour {// Start is called before the first frame updatevoid Start(){LuaMgr.GetInstance().Init();LuaMgr.GetInstance().DoLuaFile("Main");}// Update is called once p…

关于SpringBoot2.x集成SpringSecurity+JJWT(0.7.0-->0.11.5)生成Token登录鉴权的问题

项目场景&#xff1a; 问题&#xff1a;遵循版本稳定的前提下&#xff0c;搭建权限认证框架&#xff0c;基于SpringBoot2.xSpringSecurity向上依赖jjwt0.7.0构建用户认证鉴权&#xff0c;起因是某L觉得jjwt0.7.0版本&#xff0c;官方已经放弃维护&#xff0c;且从maven仓库对0…