竞赛选题 深度学习YOLOv5车辆颜色识别检测 - python opencv

文章目录

  • 1 前言
  • 2 实现效果
  • 3 CNN卷积神经网络
  • 4 Yolov5
  • 6 数据集处理及模型训练
  • 5 最后

1 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 **基于深度学习YOLOv5车辆颜色识别检测 **

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 实现效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3 CNN卷积神经网络

卷积神经网络(CNN),是由多层卷积结构组成的一种神经网络。卷积结构可以减少网络的内存占用、参数和模型的过拟合。卷积神经网络是一种典型的深度学习算法。广泛应用于视觉处理和人工智能领域,特别是在图像识别和人脸识别领域。与完全连接的神经网络相比,CNN输入是通过交换参数和局部感知来提取图像特征的图像。卷积神经网络是由输入层、卷积层、池化层、全连接层和输出层五层结构组成。其具体模型如下图所示。
在这里插入图片描述

(1)输入层(Input
layer):输入层就是神经网络的输入端口,就是把输入传入的入口。通常传入的图像的R,G,B三个通道的数据。数据的输入一般是多维的矩阵向量,其中矩阵中的数值代表的是图像对应位置的像素点的值。

(2)卷积层(Convolution layer):卷积层在CNN中主要具有学习功能,它主要提取输入的数据的特征值。

(3)池化层(Pooling
layer):池化层通过对卷积层的特征值进行压缩来获得自己的特征值,减小特征值的矩阵的维度,减小网络计算量,加速收敛速度可以有效避免过拟合问题。

(4)全连接层(Full connected
layer):全连接层主要实现是把经过卷积层和池化层处理的数据进行集合在一起,形成一个或者多个的全连接层,该层在CNN的功能主要是实现高阶推理计算。

(5)输出层(Output layer):输出层在全连接层之后,是整个神经网络的输出端口即把处理分析后的数据进行输出。

cnn卷积神经网络的编写如下,编写卷积层、池化层和全连接层的代码

conv1_1 = tf.layers.conv2d(x, 16, (3, 3), padding='same', activation=tf.nn.relu, name='conv1_1')
conv1_2 = tf.layers.conv2d(conv1_1, 16, (3, 3), padding='same', activation=tf.nn.relu, name='conv1_2')
pool1 = tf.layers.max_pooling2d(conv1_2, (2, 2), (2, 2), name='pool1')
conv2_1 = tf.layers.conv2d(pool1, 32, (3, 3), padding='same', activation=tf.nn.relu, name='conv2_1')
conv2_2 = tf.layers.conv2d(conv2_1, 32, (3, 3), padding='same', activation=tf.nn.relu, name='conv2_2')
pool2 = tf.layers.max_pooling2d(conv2_2, (2, 2), (2, 2), name='pool2')
conv3_1 = tf.layers.conv2d(pool2, 64, (3, 3), padding='same', activation=tf.nn.relu, name='conv3_1')
conv3_2 = tf.layers.conv2d(conv3_1, 64, (3, 3), padding='same', activation=tf.nn.relu, name='conv3_2')
pool3 = tf.layers.max_pooling2d(conv3_2, (2, 2), (2, 2), name='pool3')
conv4_1 = tf.layers.conv2d(pool3, 128, (3, 3), padding='same', activation=tf.nn.relu, name='conv4_1')
conv4_2 = tf.layers.conv2d(conv4_1, 128, (3, 3), padding='same', activation=tf.nn.relu, name='conv4_2')
pool4 = tf.layers.max_pooling2d(conv4_2, (2, 2), (2, 2), name='pool4')flatten = tf.layers.flatten(pool4)
fc1 = tf.layers.dense(flatten, 512, tf.nn.relu)
fc1_dropout = tf.nn.dropout(fc1, keep_prob=keep_prob)
fc2 = tf.layers.dense(fc1, 256, tf.nn.relu)
fc2_dropout = tf.nn.dropout(fc2, keep_prob=keep_prob)
fc3 = tf.layers.dense(fc2, 2, None)

4 Yolov5

简介

我们选择当下YOLO最新的卷积神经网络YOLOv5来进行火焰识别检测。6月9日,Ultralytics公司开源了YOLOv5,离上一次YOLOv4发布不到50天。而且这一次的YOLOv5是完全基于PyTorch实现的!在我们还对YOLOv4的各种高端操作、丰富的实验对比惊叹不已时,YOLOv5又带来了更强实时目标检测技术。按照官方给出的数目,现版本的YOLOv5每个图像的推理时间最快0.007秒,即每秒140帧(FPS),但YOLOv5的权重文件大小只有YOLOv4的1/9。

目标检测架构分为两种,一种是two-stage,一种是one-stage,区别就在于 two-stage 有region
proposal过程,类似于一种海选过程,网络会根据候选区域生成位置和类别,而one-stage直接从图片生成位置和类别。今天提到的 YOLO就是一种
one-stage方法。YOLO是You Only Look Once的缩写,意思是神经网络只需要看一次图片,就能输出结果。YOLO
一共发布了五个版本,其中 YOLOv1 奠定了整个系列的基础,后面的系列就是在第一版基础上的改进,为的是提升性能。

YOLOv5有4个版本性能如图所示:
在这里插入图片描述

网络架构图

在这里插入图片描述

YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。主要的改进思路如下所示:

输入端

在模型训练阶段,提出了一些改进思路,主要包括Mosaic数据增强、自适应锚框计算、自适应图片缩放;

Mosaic数据增强
:Mosaic数据增强的作者也是来自YOLOv5团队的成员,通过随机缩放、随机裁剪、随机排布的方式进行拼接,对小目标的检测效果很不错
在这里插入图片描述

基准网络

融合其它检测算法中的一些新思路,主要包括:Focus结构与CSP结构;

Neck网络

在目标检测领域,为了更好的提取融合特征,通常在Backbone和输出层,会插入一些层,这个部分称为Neck。Yolov5中添加了FPN+PAN结构,相当于目标检测网络的颈部,也是非常关键的。

在这里插入图片描述
在这里插入图片描述

FPN+PAN的结构
在这里插入图片描述
这样结合操作,FPN层自顶向下传达强语义特征(High-Level特征),而特征金字塔则自底向上传达强定位特征(Low-
Level特征),两两联手,从不同的主干层对不同的检测层进行特征聚合。

FPN+PAN借鉴的是18年CVPR的PANet,当时主要应用于图像分割领域,但Alexey将其拆分应用到Yolov4中,进一步提高特征提取的能力。

Head输出层

输出层的锚框机制与YOLOv4相同,主要改进的是训练时的损失函数GIOU_Loss,以及预测框筛选的DIOU_nms。

对于Head部分,可以看到三个紫色箭头处的特征图是40×40、20×20、10×10。以及最后Prediction中用于预测的3个特征图:


①==>40×40×255

②==>20×20×255③==>10×10×255

在这里插入图片描述

  • 相关代码

    class Detect(nn.Module):stride = None  # strides computed during buildonnx_dynamic = False  # ONNX export parameterdef __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layersuper().__init__()self.nc = nc  # number of classesself.no = nc + 5  # number of outputs per anchorself.nl = len(anchors)  # number of detection layersself.na = len(anchors[0]) // 2  # number of anchorsself.grid = [torch.zeros(1)] * self.nl  # init gridself.anchor_grid = [torch.zeros(1)] * self.nl  # init anchor gridself.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output convself.inplace = inplace  # use in-place ops (e.g. slice assignment)def forward(self, x):z = []  # inference outputfor i in range(self.nl):x[i] = self.m[i](x[i])  # convbs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()if not self.training:  # inferenceif self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)y = x[i].sigmoid()if self.inplace:y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xyy[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # whelse:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xywh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # why = torch.cat((xy, wh, y[..., 4:]), -1)z.append(y.view(bs, -1, self.no))return x if self.training else (torch.cat(z, 1), x)def _make_grid(self, nx=20, ny=20, i=0):d = self.anchors[i].deviceif check_version(torch.__version__, '1.10.0'):  # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibilityyv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)], indexing='ij')else:yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()anchor_grid = (self.anchors[i].clone() * self.stride[i]) \.view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()return grid, anchor_grid
    

6 数据集处理及模型训练

数据集准备

由于目前汽车颜色图片并没有现成的数据集,我们使用Python爬虫利用关键字在互联网上获得的图片数据,编写程序爬了1w张,筛选后用于训练。

深度学习图像标注软件众多,按照不同分类标准有多中类型,本文使用LabelImg单机标注软件进行标注。LabelImg是基于角点的标注方式产生边界框,对图片进行标注得到xml格式的标注文件,由于边界框对检测精度的影响较大因此采用手动标注,并没有使用自动标注软件。

考虑到有的朋友时间不足,博主提供了标注好的数据集和训练好的模型,需要请联系。

数据标注简介

通过pip指令即可安装


pip install labelimg

在命令行中输入labelimg即可打开

在这里插入图片描述
后续课查看其他标注教程,不难。

开始训练模型

处理好数据集和准备完yaml文件,就可以开始yolov5的训练了。首先我们找到train.py这个py文件。

然后找到主函数的入口,这里面有模型的主要参数。修改train.py中的weights、cfg、data、epochs、batch_size、imgsz、device、workers等参数
在这里插入图片描述

至此,就可以运行train.py函数训练自己的模型了。

训练代码成功执行之后会在命令行中输出下列信息,接下来就是安心等待模型训练结束即可。
在这里插入图片描述

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/105254.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

React如何优化减少组件间的重新Render

目前写了不少React的项目,发现React有些特点更灵活和注重细节,很多东西需要有一定的内功才能掌握好;比如在项目中常常遇到的组件重复渲染,有时候组件重复渲染如果内容是纯文本,不打印日志就不容易发现重复渲染了&#…

每日一题 136. 只出现一次的数字(简单,位运算)

异或运算性质,两个相等的数作异或运算得零,任何数与零作异或运算保持不变 所以整个数组的异或和就是答案 class Solution:def singleNumber(self, nums: List[int]) -> int:ans 0for i in nums:ans ^ ireturn ans一行代码,reduce作累积操…

亚马逊测评安全吗?

测评可以说是卖家非常宝贵的财富,通过测评和广告相结合,可以快速有效的提升店铺的产品销量,提高转化,提升listing权重,但现在很多卖家找真人测评补单后店铺出现问题导致大家对测评的安全性感到担忧,因为真人…

List 模拟实现

前言 本文将会向你介绍如何模拟实现list、iterator迭代器 模拟实现 引入 迭代器是一种用于访问容器中元素的对象,它封装了对容器中元素的访问方式。迭代器提供了一组操作接口,可以让我们通过迭代器对象来遍历容器中的元素。(iterator迭代器…

Lua调用C#类

先创建一个Main脚本作为主入口,挂载到摄像机上 public class Main : MonoBehaviour {// Start is called before the first frame updatevoid Start(){LuaMgr.GetInstance().Init();LuaMgr.GetInstance().DoLuaFile("Main");}// Update is called once p…

关于SpringBoot2.x集成SpringSecurity+JJWT(0.7.0-->0.11.5)生成Token登录鉴权的问题

项目场景: 问题:遵循版本稳定的前提下,搭建权限认证框架,基于SpringBoot2.xSpringSecurity向上依赖jjwt0.7.0构建用户认证鉴权,起因是某L觉得jjwt0.7.0版本,官方已经放弃维护,且从maven仓库对0…

python二次开发CATIA:测量曲线长度

以下代码是使用Python语言通过win32com库来控制CATIA应用程序的一个示例。主要步骤包括创建一个新的Part文件,然后在其中创建一个新的几何图形集,并在这个集合中创建一个样条线。这个样条线是通过一组给定的坐标点来创建的,这些点被添加到集合…

SpringCloud-Config

一、介绍 (1)服务注册中心 (2)管理各个服务上的application.yml,支持动态修改,但不会影响客户端配置 (3)一般将application.yml文件放在git上,客户端通过http/https方式…

MyLife - Docker安装rabbitmq

Docker安装rabbitmq 个人觉得像rabbitmq之类的基础设施在线上环境直接物理机安装使用可能会好些。但是在开发测试环境用docker容器还是比较方便的。这里学习下docker安装rabbitmq使用。 1. rabbitmq 镜像库地址 rabbitmq 镜像库地址:https://hub.docker.com/_/rabbi…

介绍一款小巧的Excel比对工具-DiffExcel

【缘起:此前找了一通,没有找到免费又好用的Excel比对工具,而ExcelBDD需要把Excel文件存放到Git,因此迫切需要Excel比对工具。 最新升级到V1.3.3,因为git diff有变化,原来是git diff会修改文件名&#xff0…

Compose 组件 - 分页器 HorizontalPager、VerticalPager

一、概念 类似于 ViewPager,1.4 版本之前需要借助 accompanis 库,底层基于 LazyColumn、LazyRow 实现,在使用上也基本相同。默认情况下 HorizontalPager 占据屏幕的整个宽度,VerticalPager 会占据整个高度。 fun HorizontalPager(…

xshell使用方法(超详细)

一、安装 下载最新版安装即可,不需要做任何配置。 安装完成后输入账号名和邮箱,确认后邮箱会收到一条确认邮件,将里面的链接点开即可免费使用(仅安装后会出现,认证后以后再打开不需要重复操作,如果重新安…

【MySQL】索引的作用及知识储备

为什么要有索引 索引可以提高数据库的性能。不用加内存,不用改程序,不用调sql,只要执行正确的create indix,查询的速度就可能提高成百上千倍。但相应的代价是,插入,更新,删除的速度有所减弱。 …

[论文分享] EnBinDiff: Identifying Data-Only Patches for Binaries

EnBinDiff: Identifying Data-Only Patches for Binaries [TDSC 2021] 在本文中,我们将重点介绍纯数据补丁,这是一种不会引起任何结构更改的特定类型的安全补丁。作为导致假阴性的最重要原因之一,纯数据补丁成为影响所有最先进的二进制差分方…

切换npm的版本

1、在配置环境变量的地址中,多准备几个已解压版本的node 2、要想升降版本直接更改该文件中的文件夹名称就行 环境变量中的path的值是不用变的C:\Program Files\nodejs

Ubuntu22安装Docker engine(apt安装方式)

一、准备工作 新创建一个虚拟机。 进入虚拟机: 二、安装docker docker现在对用不同主机提供了不同安装包:docker engine 和 docker desktop。 docker desktop适用于图形化的桌面电脑,docker engine适用于服务器。我们这里当然是安装docker…

SpringCloud-Gateway

一、介绍 (1)网关服务 (2)功能:断言、路由、过滤 (3)能避免用户直接访问到业务主机 二、项目搭建 a、编写pom.xml(注意移除web框架,gateway中自带有) &l…

7.定时器

定时器资源 CC2530有四个定时器TIM1~TIM4和休眠定时器 TIM1 定时器1 是一个独立的16 位定时器,支持典型的定时/计数功能,比如输入捕获,输出比较和PWM 功能。定时器有五个独立的捕获/比较通道。每个通道定时器使用一个I/O 引脚。定时器用于…

【API篇】二、源算子API

文章目录 0、demo数据1、源算子Source2、从集合中读取数据3、从文件中读取4、从Socket读取5、从Kafka读取6、从数据生成器读取数据7、Flink支持的数据类型8、Flink的类型提示(Type Hints) 0、demo数据 准备一个实体类WaterSensor: Data All…

【入门】.Net Core 6 WebApi 项目搭建

一、创建项目 1.1.创建新项目:打开开发工具>创建新项目>搜索API>选择C#语言的ASP.NET Core Web API 1.2.配置新项目:**自定义项目信息以及存储路径 1.3.其他信息:这里框架必须选择.NET 6.0,其他配置默认勾选即可,也可以根…