Pytorch从零开始实战05

Pytorch从零开始实战——运动鞋识别

本系列来源于365天深度学习训练营

原作者K同学

文章目录

  • Pytorch从零开始实战——运动鞋识别
    • 环境准备
    • 数据集
    • 模型选择
    • 数据可视化
    • 模型预测
    • 总结

环境准备

本文基于Jupyter notebook,使用Python3.8,Pytorch2.0.1+cu118,torchvision0.15.2,需读者自行配置好环境且有一些深度学习理论基础。本次实验的目的是了解如何设置动态学习率。
第一步,导入常用包。

import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import torchvision
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torch.nn.functional as F
import random
from time import time
import numpy as np
import pandas as pd
import datetime
import gc
import os
os.environ['KMP_DUPLICATE_LIB_OK']='True'  # 用于避免jupyter环境突然关闭
torch.backends.cudnn.benchmark=True  # 用于加速GPU运算的代码

设置随机数种子,428不好用,这次设置为55

torch.manual_seed(55)
torch.cuda.manual_seed(55)
torch.cuda.manual_seed_all(55)
random.seed(55)
np.random.seed(55)

创建设备对象,检测设备

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device

数据集

本次实验是对运动鞋图片进行分类任务,共579张图片,是一个二分类任务,标签为adidas、nike,两种类别的图片分别存放在不同的文件夹中。

展示图片函数

def plotsample(data):fig, axs = plt.subplots(1, 5, figsize=(10, 10)) #建立子图for i in range(5):num = random.randint(0, len(data) - 1) #首先选取随机数,随机选取五次#抽取数据中对应的图像对象,make_grid函数可将任意格式的图像的通道数升为3,而不改变图像原始的数据#而展示图像用的imshow函数最常见的输入格式也是3通道npimg = torchvision.utils.make_grid(data[num][0]).numpy()nplabel = data[num][1] #提取标签 #将图像由(3, weight, height)转化为(weight, height, 3),并放入imshow函数中读取axs[i].imshow(np.transpose(npimg, (1, 2, 0))) axs[i].set_title(nplabel) #给每个子图加上标签axs[i].axis("off") #消除每个子图的坐标轴

查看classNames

import pathlib
data_dir = './data/snk/train'
data_dir = pathlib.Path(data_dir) # 转成pathlib.Path对象data_paths = list(data_dir.glob('*')) # [PosixPath('data/snk/train/adidas'), PosixPath('data/snk/train/nike')]
classNames = [str(path).split("/")[3] for path in data_paths]
classNames # 二分类问题 ['adidas', 'nike']

使用transforms来预处理原始数据,统一尺寸、转换为张量、标准化

train_transforms = transforms.Compose([transforms.Resize([224, 224]),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # 标准化
])test_transforms = transforms.Compose([transforms.Resize([224, 224]),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # 标准化
])# 根据文件名设置标签
train_dataset = datasets.ImageFolder("./data/snk/train/", transform=train_transforms)
test_dataset = datasets.ImageFolder("./data/snk/test/", transform=train_transforms)

随机查看5张图片

plotsample(train_dataset)

在这里插入图片描述
使用DataLoader划分数据集,batch_size = 32

batch_size = 32
train_dl = torch.utils.data.DataLoader(train_dataset,batch_size=batch_size,shuffle=True,)
test_dl = torch.utils.data.DataLoader(test_dataset,batch_size=batch_size,shuffle=True,)len(train_dl.dataset), len(test_dl.dataset) # 503 76

模型选择

本次还是选择简单的卷积神经网络,这次写法使用Sequential,表示这一块是一个单独的模块。

class Model(nn.Module):def __init__(self):super().__init__()self.conv1 = nn.Sequential(nn.Conv2d(3, 12, kernel_size=5), # 220nn.BatchNorm2d(12),nn.ReLU())self.conv2 = nn.Sequential(nn.Conv2d(12, 12, kernel_size=5), # 216nn.BatchNorm2d(12),nn.ReLU())self.pool3 = nn.Sequential(nn.MaxPool2d(2)             # 108)self.conv4 = nn.Sequential(nn.Conv2d(12, 24, kernel_size=5),  # 104nn.BatchNorm2d(24),nn.ReLU())self.conv5 = nn.Sequential(nn.Conv2d(24, 24, kernel_size=5),  # 100nn.BatchNorm2d(24),nn.ReLU())self.pool6 = nn.Sequential(nn.MaxPool2d(2))self.dropout = nn.Sequential(nn.Dropout(0.2))self.fc = nn.Sequential(nn.Linear(50 * 50 * 24, len(classNames)))def forward(self, x):x = self.conv1(x)x = self.conv2(x)x = self.pool3(x)x = self.conv4(x)x = self.conv5(x)x = self.pool6(x)x = self.dropout(x)x = x.view(-1, 50 * 50 * 24)x = self.fc(x)return x

模型初始化

from torchsummary import summary
# 将模型转移到GPU中
model = Model().to(device)
summary(model, input_size=(3, 224, 224))

在这里插入图片描述
定义训练函数

def train(dataloader, model, loss_fn, opt):size = len(dataloader.dataset)num_batches = len(dataloader)train_acc, train_loss = 0, 0for X, y in dataloader:X, y = X.to(device), y.to(device)pred = model(X)loss = loss_fn(pred, y)opt.zero_grad()loss.backward()opt.step()train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()train_loss += loss.item()train_acc /= sizetrain_loss /= num_batchesreturn train_acc, train_loss

定义测试函数

def test(dataloader, model, loss_fn):size = len(dataloader.dataset)num_batches = len(dataloader)test_acc, test_loss = 0, 0with torch.no_grad():for X, y in dataloader:X, y = X.to(device), y.to(device)pred = model(X)loss = loss_fn(pred, y)test_acc += (pred.argmax(1) == y).type(torch.float).sum().item()test_loss += loss.item()test_acc /= sizetest_loss /= num_batchesreturn test_acc, test_loss

定义一些超参数

loss_fn = nn.CrossEntropyLoss()
learn_rate = 0.0001
opt = torch.optim.SGD(model.parameters(), lr=learn_rate)

定义学习率衰减函数,大概意思是随着epoch的增加,学习率会持续变小,使得模型更容易收敛

def adjust_rate(opt, epoch, start_lr):lr = start_lr * (0.92 ** (epoch // 2))for param_group in opt.param_groups:param_group['lr'] = lr

开始训练

import time
epochs = 30
train_loss = []
train_acc = []
test_loss = []
test_acc = []T1 = time.time()best_acc = 0
PATH = './my_model.pth'for epoch in range(epochs):adjust_rate(opt, epoch, learn_rate)model.train()epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)model.eval() # 确保模型不会进行训练操作epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)if epoch_test_acc > best_acc:best_acc = epoch_test_acctorch.save(model.state_dict(), PATH)print("model save")train_acc.append(epoch_train_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)print("epoch:%d, train_acc:%.1f%%, train_loss:%.3f, test_acc:%.1f%%, test_loss:%.3f"% (epoch + 1, epoch_train_acc * 100, epoch_train_loss, epoch_test_acc * 100, epoch_test_loss))
print("Done")
T2 = time.time()
print('程序运行时间:%s毫秒' % ((T2 - T1)*1000))

但是效果好像不是很好,模型训练的时候卡在某个极小值不动了
在这里插入图片描述
经过实验,将学习率改为0.001,效果是最好的。

import time
epochs = 30
train_loss = []
train_acc = []
test_loss = []
test_acc = []T1 = time.time()best_acc = 0
PATH = './my_model.pth'for epoch in range(epochs):model.train()epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)model.eval() # 确保模型不会进行训练操作epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)if epoch_test_acc > best_acc:best_acc = epoch_test_acctorch.save(model.state_dict(), PATH)print("model save")train_acc.append(epoch_train_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)print("epoch:%d, train_acc:%.1f%%, train_loss:%.3f, test_acc:%.1f%%, test_loss:%.3f"% (epoch + 1, epoch_train_acc * 100, epoch_train_loss, epoch_test_acc * 100, epoch_test_loss))
print("Done")
T2 = time.time()
print('程序运行时间:%s毫秒' % ((T2 - T1)*1000))

在训练集上已经达到百分百准确率了,在测试集上的表现也很好。
在这里插入图片描述

数据可视化

import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率epochs_range = range(epochs)plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述

模型预测

from PIL import Image classes = list(train_dataset.class_to_idx)def predict_one_image(image_path, model, transform, classes):test_img = Image.open(image_path).convert('RGB')plt.imshow(test_img)  # 展示预测的图片test_img = transform(test_img)img = test_img.to(device).unsqueeze(0) # 增加维度model.eval()output = model(img)_,pred = torch.max(output,1)pred_class = classes[pred]print(f'预测结果是:{pred_class}')

使用2.jpg开始预测

predict_one_image(image_path='./data/snk/test/adidas/2.jpg', model=model, transform=train_transforms, classes=classes)

预测结果是:adidas

在这里插入图片描述

总结

学习率衰减是一个很有用的东西,但有的时候,使用学习率衰减好像还不如不使用学习率衰减,感觉容易提前收敛。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/104195.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

python udp 线程接受 demo

udp使用socketserver 接受简单方便 使用是python 的threading 快速构建udp 接受线程 使用 pyqt5的QThread,用于发现信号到ui线程,跟新ui 使用queue接受udp数据,并通过queue在 udp接受线程和数据解析线程间数据传递。 from socketserver impo…

代码混淆界面介绍

代码混淆界面介绍 代码混淆功能包括oc,swift,类和函数设置区域。其他flutter,混合开发的最终都会转未oc活着swift的的二进制,所以没有其他语言的设置。 代码混淆功能分顶部的显示控制区域:显示方式,风险等…

centos7安装db2 version11.1

centos7安装DB2 操作系统 linux centos7 DB2版本 11.1 1、取包 IBM MRS Tool 将安装包放在 /home/software 下面 mkdir -p /home/software cd /home/software wget https://iwm.dhe.ibm.com/sdfdl/v2/regs2/db2pmopn/Express-C/DB2ExpressC11/Xa.2/Xb.aA_60_-i7wWKFMFpbW1xl1…

Spark上使用pandas API快速入门

文章最前: 我是Octopus,这个名字来源于我的中文名--章鱼;我热爱编程、热爱算法、热爱开源。所有源码在我的个人github ;这博客是记录我学习的点点滴滴,如果您对 Python、Java、AI、算法有兴趣,可以关注我的…

高压放大器在软体机器人领域的应用

软体机器人是一种新型机器人技术,与传统的硬体机器人有着很大的不同。软体机器人通常由柔软的材料制成,具有高度的柔韧性和灵活性,并且可以实现多种形状和动作。但是,软体机器人的发展面临很多技术挑战,其中之一就是控…

Java 解析 cURL(bash) 命令

解析 cURL(bash) 命令 1. 主要用于解析从浏览器复制来的 cURL(bash)2. 废话不多说,都在🍻代码里了。参考资料 1. 主要用于解析从浏览器复制来的 cURL(bash) curl https://eva2.csdn.net/v3/06981375190026432f77c01bfca33e32/lts/…

使用PyQt5创建图片查看器应用程序

使用PyQt5创建图片查看器应用程序 作者:安静到无声 个人主页 在本教程中,我们将使用PyQt5库创建一个简单的图片查看器应用程序。这个应用程序可以显示一系列图片,并允许用户通过按钮切换、跳转到不同的图片。 1. 准备工作 首先&#xff0…

在 TensorFlow 中调试

如果调试是消除软件错误的过程,那么编程一定是添加错误的过程。Edsger Dijkstra。来自 https://www.azquotes.com/quote/561997 一、说明 在这篇文章中,我想谈谈 TensorFlow 中的调试。 在之前的一些帖子(此处、此处和此处)中&…

谜题(Puzzle, ACM/ICPC World Finals 1993, UVa227)

有一个5*5的网格,其中恰好有一个格子是空的,其他格子各有一个字母。一共有4种指令:A, B, L, R,分别表示把空格上、下、左、右的相邻字母移到空格中。输入初始网格和指令序列(以数字0结束),输出指…

Linux shell编程学习笔记11:关系运算

Linux Shell 脚本编程和其他编程语言一样,支持算数、关系、布尔、字符串、文件测试等多种运算。前面几节我们研究了 Linux shell编程 中的 字符串运算 和 算术运算,今天我们来研究 Linux shell编程中的的关系运算。 一、关系运算符功能说明 运算符说明…

单片机常见的屏幕驱动移植

目录 一个驱动.c文件的典型模块划分(5) 1. Include files 2. Local type definitions (typedef) 3. Local pre-processor symbols/macros (#define) 4. Local variable definitions (static) 5. Function implementation - global (extern) and loc…

linux之/etc/skel目录

/etc/skel目录是在使用useradd添加用户时,一个需要用到的目录,该目录用来存放新建用户时需要拷贝到新建用户家目录下的文件。即:当我们新建新用户时,这个目录下的所有文件会自动被复制到新建用户的家目录下,默认情况下…

go语言基础之变量

目录 视频学习地址:Go零基础入门_在线视频教程-CSDN程序员研修院 一. 单变量声明和赋值 1、变量的声明 2、变量赋值 3、声明并赋值 二. 多变量声明和赋值 1、多变量声明 2、多变量赋值 三. 变量声明赋值的简易写法 1、单变量简易写法 2、多变量简易写法 …

DOSBox和MASM汇编开发环境搭建

DOSBox和MASM汇编开发环境搭建 1 安装DOSBox2 安装MASM3 编译测试代码4 运行测试代码5 调试测试代码 本文属于《 X86指令基础系列教程》之一,欢迎查看其它文章。 1 安装DOSBox 下载DOSBox和MASM:https://download.csdn.net/download/u011832525/884180…

uniapp封装loading 的动画动态加载

实现效果 html代码 <view class"loadBox" v-if"loading"><img :src"logo" class"logo"> </view> css代码 .loadBox {width: 180rpx;min-height: 180rpx;border-radius: 50%;display: flex;align-items: center;j…

【面试经典150 | 哈希表】存在重复元素 II

文章目录 Tag题目来源题目解读解题思路方法一&#xff1a;哈希表方法二&#xff1a;滑动窗口 其他语言python3哈希表python3滑动窗口 写在最后 Tag 【哈希表】【滑动窗口】【数组】 题目来源 219. 存在重复元素 II 题目解读 判断在数组中有没有相同的元素小于一定的距离。 解…

Java面试题-Java核心基础-第三天(基本数据类型)

目录 一、Java的基本数据类型了解吗&#xff1f; 二、基本类型和包装类型的区别 三、包装类型的缓存机制了解吗&#xff1f; 四、自动拆箱和自动装箱了解吗&#xff1f; 五、为什么浮点数在运算的时候会有精度损失的风险&#xff1f; 六、如何解决浮点数在运算时存在的精度…

Win10 系统中用户环境变量和系统环境变量是什么作用和区别?

环境&#xff1a; Win10专业版 问题描述&#xff1a; Win10 系统中用户环境变量和系统环境变量是什么作用和区别&#xff1f; 解答&#xff1a; 在Windows 10系统中&#xff0c;用户环境变量和系统环境变量是两个不同的环境变量&#xff0c;它们具有不同的作用和区别 1.用…

双向链表C语言版本

1、声明链表节点操作函数 linklist.h #ifndef LINKLIST_H__ #define LINKLIST_H__ #include <stdio.h> #include <stdlib.h> #include <stdbool.h>//#define TAIL_ADD #define HEAD_ADD typedef int LinkDataType; // 构造节点 struct LinkNode {LinkDataTy…

【Debian】报错:su: Authentication failure

项目场景&#xff1a; 今天我重新刷了一个debian系统。 系统版本&#xff1a; # 查看系统版本 lsb_release -a 我的系统版本&#xff1a; No LSB modules are available. Distributor ID&#xff1a;Debian Description: Debian GNU/Linux 12 &#xff08;bookworm&#xff…