非肿瘤纯生信拿下7+,多种机器学习算法,搭配WGCNA。

今天给同学们分享一篇非肿瘤+WGCNA+机器学习的生信文章“Screening of immune-related secretory proteins linking chronic kidney disease with calcific aortic valve disease based on comprehensive bioinformatics analysis and machine learning”,这篇文章于2023年1月1日发表在J Transl Med期刊上,影响因子为7.4。
1c07f59b2e2e8e32140c03c68346beaf.jpeg

慢性肾脏疾病(CKD)是最重要的心血管风险因素之一,在钙化主动脉瓣病(CAVD)等各种心血管疾病的发病机制中起着重要作用。作者的目标是探索与CKD相关的基因,可能涉及CAVD的发病机制,并发现CKD合并CAVD的诊断候选生物标志物。


1. 数据处理

生物信息学分析策略如图1所示进行。从GEO数据库中收集了钙化和对照主动脉瓣样本的三个原始数据集,并在进行批次效应去除后进行了合并。批次校正后,得到了整合的CAVD数据集,并进行了归一化处理,其中CAVD组包括34个钙化样本,对照组包括23个对照样本。如图2A和B所示,在批次效应去除后,三个数据集之间的差异显著减少。

ad351d867a66f5c6568e0be20dbe821b.jpeg

图1 本研究设计的流程图

2eab3cdf5ab75e1ca9b71ff05a2378b9.jpeg

图2 CAVD数据集的整合和整合CAVD数据集的差异表达分析


2. 钙化主动脉瓣病中不同表达基因的鉴定

综合钙化和对照主动脉瓣样本之间的差异分析显示,共有173个差异表达基因(DEGs),其截断标准为调整后的p值≤0.05且|log2(FC)|≥1,其中包含119个上调基因和54个下调基因。通过火山图和热图来描述综合CAVD数据集中DEGs的表达模式(图2C和D)。


3. CAVD中加权基因共表达网络的构建和关键模块的识别

为了进一步探索CAVD中的关键基因,作者进行了加权基因共表达网络分析(WGCNA),以确定钙化主动脉瓣样本中最相关的基因模块。根据尺度独立性和平均连接性,选择了软阈值为5(图3A)。使用该阈值生成了14个模块,并在图3B中呈现了模块的聚类树状图。模块特征基因的聚类显示在图3C中。此外,本研究还探讨了CAVD与基因模块之间的相关性(图3D)。这些数据显示,粉色模块与CAVD呈最高正相关(358个基因,r = 0.84,p = 5e−16),而黄色模块与CAVD呈最负相关(769个基因,r = − 0.72,p = 2e−10)。基于此,粉色和黄色模块被视为后续分析的关键模块。此外,作者发现粉色(r = 0.4,p = 3.5e−15)和黄色模块(r = 0.6,p = 2.2e−76)的模块成员与基因重要性之间存在强关联(图3E,F)。因此,在粉色和黄色模块中确定了与CAVD显著相关的1127个关键基因。此外,作者还进一步交叉分析了来自DEGs和WGCNA的关键基因,以在钙化主动脉瓣样本中确定CAVD的关键基因,共获得了124个基因,这些基因将进一步进行后续分析(图3G)。

970cbbb9574fc40a48f2702a27b08614.jpeg

图3 通过WGCNA筛选综合CAVD数据集中的关键模块基因,并通过关键模块基因和DEGs的交集鉴定CAVD关键基因


4. 慢性肾脏疾病中不同表达的分泌蛋白的鉴定

众所周知,CKD与CAVD有因果关系,并可能加速CAVD的发生和进展[15]。为了研究与CKD相关的CAVD的致病基因,作者首先重新分析了来自GEO数据库的CKD外周血单个核细胞(PBMC)和CKD肾组织的表达谱。如图4A和D所示的火山图和热图可视化,CKD PBMC中共鉴定出2681个差异表达基因(DEGs),而CKD肾组织中发现了4111个DEGs,符合调整后p≤0.05和|log2(fold change)|≥0.585的阈值。考虑到CKD可能主要通过释放分泌蛋白质来促进CAVD的发生和发展,作者随后通过结合来自CKD PBMC(图4E)和肾组织数据集(图4F)的376个和607个差异表达的分泌蛋白质,获得了与CKD相关的分泌蛋白质。

574058d459873a250b81e188fed53b3f.jpeg

图4 通过对CKD的PBMC和肾组织中的分泌蛋白进行差异表达分析,鉴定与CKD相关的分泌蛋白


5. 蛋白质相互作用网络和参与CKD相关CAVD的致病基因的功能富集

为了揭示CKD相关CAVD中的潜在致病基因和潜在机制,作者使用STRING数据库收集了CKD相关分泌蛋白与CAVD关键基因之间的相互作用,置信度得分大于0.4。通过Cytoscape软件展示了CKD相关CAVD的致病基因,并通过采用MCODE方法确定了最显著的两个模块,其中包括76个基因被确定为CKD相关的致病基因(图5A和B)。为了更好地了解这些致病基因的功能和特定机制,作者将这些基因从最显著的两个模块中导入DAVID在线数据库进行功能富集和KEGG分析。基因本体(GO)术语的生物过程(BP)分析表明,CKD相关CAVD的致病基因主要富集在“炎症反应”和“免疫反应”方面(图5C)。在细胞组分(CC)的GO术语分析中,这些致病基因主要位于“膜的整体组分”和“细胞外区域”(图5D)。关于分子功能(MF)分析,结果表明“蛋白质结合”和“相同蛋白质结合”是致病基因中最相关的项目(图5E)。KEGG通路分析显示,与CKD相关的CAVD中的致病基因与“细胞因子-细胞因子受体相互作用”、“PI3K-Akt信号通路”和“NF-Kappa B信号通路”密切相关(图5F)。

ff739f3be3b277df3940bbd7eaec51eb.jpeg

图5 CKD相关分泌蛋白与CAVD关键基因之间的PPI分析,随后对筛选出的节点进行富集分析


6. 寻找CAVD治疗候选小分子化合物

为了进一步研究可能对CKD相关CAVD患者产生治疗效果的潜在小分子药物,作者将CKD相关致病基因中钙化主动脉瓣样本中的上调基因导入到连接图谱(cMAP)数据库中,以预测能够逆转CAVD中CKD相关致病基因表达改变的小分子化合物。经过重要的查询,作者确定了排名前十的化合物,包括甲酰肾上腺皮质酮、吉非替尼、地拉嗪、氨基戊酰胺、甲氧苯酥酮、福斯科林、CGP-37157、IKK2抑制剂、韦达拉滨和TG-101348,它们具有最高的负分数,被认为是CKD相关CAVD治疗的潜在药物治疗剂(图6A)。这10种化合物的靶向途径和化学结构的描述显示在图6B、C中。

4e58bdc717f8508d14875bd156b7da95.jpeg

图6 通过cMAP分析筛选用于CAVD治疗的潜在小分子化合物


7. 通过机器学习筛选具有诊断价值的关键基因,并构建CKD相关CAVD的诊断模型

由于CAVD和CKD之间的常见差异表达的分泌蛋白可能在与CKD相关的CAVD患者中起着关键作用,因此在CKD相关分泌蛋白和CAVD关键基因的交汇处确定了17个共同基因,并对其进行了后续构建CAVD诊断模型的研究,该模型可以区分患有或不患有CAVD的CKD患者(图7A)。采用LASSO回归算法,从17个共同基因中鉴定出了8个对诊断CKD相关CAVD患者具有重要影响的潜在候选基因(图7B、C)。为了进一步缩小诊断生物标志物的范围,还进行了随机森林(RF)机器学习算法,根据每个基因的变量重要性对17个共同基因进行排序,并提取了MeanDecreaseGini > 2的基因(图7D)。有趣的是,在将LASSO的8个候选基因和RF的6个潜在基因叠加后,只有两个核心基因在两个子集中重叠,分别是分泌性白细胞蛋白酶抑制剂(SLPI)和基质金属蛋白酶9(MMP9)(图7E)。为了更好地进行诊断和预测,作者基于两个核心基因进行了逻辑回归分析,构建了一个图表(图8A)。作者使用受试者工作特征曲线(ROC曲线)评估了每个核心基因和图表的曲线下面积(AUC)值,以确定它们在CKD相关CAVD的诊断效能中的敏感性和特异性。正如作者所预期的那样,这两个核心基因的AUC值均大于0.9,而图表的AUC值比每个核心基因都要高,这表明图表可能对CKD相关CAVD具有很强的诊断价值(图8B-D)。校准曲线显示,构建的图表诊断模型的预测概率与理想模型几乎相同(图8E)。此外,作者还进行了图表的决策曲线分析(DCA),结果显示根据图表模型进行决策可能有助于CKD相关CAVD的诊断(图8F)。硬化是CAVD的早期阶段。在GEO数据库的GSE51472数据集中,诺莫图还展示了在患有硬化主动脉瓣的CKD患者中的理想预测价值,该数据集包括5个人类硬化主动脉瓣组织样本和5个人类正常主动脉瓣组织样本(图8G),这意味着诺莫图模型对早期患有CKD的CAVD患者也能展现出良好的诊断效能。

876234445688304d65936b800d6e4628.jpeg

图7 通过机器学习方法鉴定CKD相关CAVD的潜在诊断生物标志物

696e7594aa289211680811ef8139c314.jpeg

图8 诊断评分模型的开发和疗效评估


8. 冠状动脉瓣膜疾病(CAVD)中的免疫细胞浸润及与入侵免疫细胞的关联分析

作者发现,与CAVD相关的致病基因的功能和通路分析与炎症和免疫过程密切相关。作者使用CIBERSORT算法来推导免疫细胞的特征,并探索免疫调节以及诊断生物标志物与CAVD中免疫细胞浸润的相关性。图9A显示了每个样本中22种免疫细胞的比例,并且在10个免疫细胞亚群中,钙化和对照主动脉瓣样本之间存在显著差异。与对照组相比,CAVD显示出更高比例的巨噬细胞M0、T细胞CD8和调节性T细胞(Tregs),而B细胞原始、活化树突状细胞、巨噬细胞M2、活化肥大细胞、活化NK细胞、浆细胞和T细胞CD4原始的比例较低(图9B)。此外,对22种免疫细胞的相关性分析表明,T细胞CD4原始与Tregs呈显著正相关(r = 0.57,p < 0.05),而活化肥大细胞与活化树突状细胞呈负相关(r = -0.68,p < 0.05)(图9C)。此外,进一步探索了两个关键基因的表达与不同浸润免疫细胞类型比例之间的关联。如图9D所示,关键基因SLPI和MMP9在CAVD中均与免疫细胞积聚呈显著相关。

e4db4b3e8199ef8f998424a7ad7c1885.jpeg

图9 CAVD中的免疫细胞浸润分析


9.&nbsp;两个关键基因表达模式的验证和诊断模型的评估价值

为了进一步确认上述综合生物信息学分析的准确性,作者首先检查了外部队列中招募患者的两个关键基因的表达模式。RT-qPCR结果证实,与对照主动脉瓣样本相比,钙化主动脉瓣样本中的两个关键基因表达模式一致上调(图10A)。此外,通过ELISA可以检测到SLPI和MMP9,并且在CKD和CAVD患者以及合并CKD的CAVD患者中水平显著升高(图10B)。然后,作者基于作者的队列开发了一个CAVD诊断评分模型(名为评分图A),用于预测来自对照组和CAVD组的CAVD可能性(图10C)。根据ROC曲线,与每个生物标志物相比,评分图A在对照组和CAVD患者之间显示出最高的AUC(图10D)。此外,校准曲线和决策曲线分析显示,基于评分图A进行决策可能有利于CAVD的预测(图10E,F)。此外,作者还构建了另一个诊断评分模型(名为评分图B),用于区分合并或不合并CAVD的CKD患者(图... 10G)。同样,ROC曲线、校准曲线以及DCA显示出了B型诺模图对于患有CAVD的CKD患者具有理想的预测价值(图10H-J)。

fc4f6bed3b70c76a28dcba77fd22f8a1.jpeg

图10

&nbsp;

总结

在这项研究中,作者发现了冠状动脉瓣膜疾病(CAVD)和对照组之间免疫细胞浸润方面的显著差异。CAVD组中巨噬细胞M0、T细胞CD8和调节性T细胞的丰度较高,而B细胞(初级)、活化树突状细胞、巨噬细胞M2、活化肥大细胞、活化自然杀伤细胞、浆细胞和T细胞CD4(初级)的比例较低。此外,核心基因SLPI和MMP9与CAVD中的免疫细胞浸润密切相关,这意味着这些候选生物标志物不仅可以区分CAVD,还可能通过与炎症免疫途径的相互作用对CAVD产生影响。因此,全面了解与CAVD相关的炎症免疫途径对于开发新的诊断或预后生物标志物以及CAVD的治疗靶点至关重要。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/103271.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

PG14归档失败解决办法archiver failed on wal_lsn

问题描述 昨晚RepmgrPG14主备主库因wal日志撑爆磁盘&#xff0c;删除主库过期wal文件重做备库后上午进行主备状态巡查&#xff0c;主库向备库发送wal文件正常&#xff0c;但是查主库状态时发现显示有1条归档失败的记录。 postgres: archiver failed on 000000010000006F000000…

【算法-动态规划】零钱兑换问题-力扣 322

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kuan 的首页,持续学…

[ubuntu]OpenFOAM国内源码满速下载地址

下列地址可直接使用git clone&#xff0c;例如&#xff0c;打开终端&#xff0c;在终端直接将下面的复制进去&#xff1a; git clone https://e.coding.net/dyfluid/ThirdParty-6/ThirdParty-6.git即可在本地创建ThirdParty-6文件夹。如果提示你没有git&#xff0c;那么输入下面…

linux安装mysql

一、Mysql概述 MySQL 是一个开放源码的小型关联式数据库管理系统&#xff0c;开发者为瑞典 MySQL AB 公司。目前 MySQL 被广泛地应用在 Internet 上的中小型网站中。由于其体积小、速度快、总体拥有成本低&#xff0c;尤其是开放源码这一特点&#xff0c;许多中小型网站为了降…

看一下链表结构

序、慢慢来才是最快的方法。 背景 链表(Linked List) 链表是一种常见的基础数据结构&#xff0c;是一种线性表。与顺序表不同的是&#xff0c;链表中的每个节点不是顺序存储的&#xff0c;而是通过节点的指针域指向到下一个节点。 1.链表的优缺点 2.链表的类型 单链表、双链表…

有了PMP证书,还用考CSPM吗?

首先结论放前面&#xff08;看个人发展要求&#xff0c;如果想有双证加持的话&#xff0c;建议可以把握这个机会去申请&#xff0c;因为现在处于政策前期&#xff0c;可以免试申请&#xff0c;未来的政策未知。如果目前已经从事项目管理且拥有pmp证书的话&#xff0c;为了以后的…

将C盘中的文件夹迁移到其他盘符

目录 1 微信文件 2 移动系统自带文件夹 3 清除软件的缓存 1 微信文件 微信文件默认存储在C盘中&#xff0c;放任不管可能会占用很大的空间 更改后文件会自动挪过去&#xff0c;在C盘中只保留较小的空间 2 移动系统自带文件夹 像文档&#xff0c;图片这种文件夹&#…

TOGAF(企业架构)

TOGAF 核心概念&#xff08;官方原版&#xff09; 什么是TOGAF&#xff1f; TOGAF?是一种经验证的企业架构方法和框架&#xff0c;被世界领先的组织用于提高业务效率。它是一个企业架构标准&#xff0c;确保企业架构专业人员之间的标准、方法和通信一致&#xff0c;以便我们…

解读提示工程(Prompt Engineering)

提示工程&#xff08;Prompt Engineering&#xff09;&#xff0c;也称为上下文提示&#xff0c;是一种通过不更新模型的权重/参数来引导LLM行为朝着特定结果的方法。这是与AI有效交流所需结果的过程。提示工程可以用于各种任务&#xff0c;从回答问题到算术推理乃至各种应用领…

1808_ChibiOS基本的架构介绍

全部学习汇总&#xff1a; GreyZhang/g_ChibiOS: I found a new RTOS called ChibiOS and it seems interesting! (github.com) 简单看了一下ChibiOS的架构介绍&#xff0c;感觉这种OS以及组件非常适合快速构建一个应用。这里做一个简单的资料整理。。 1. 不同于其他的OS&#…

孙哥Netty视频笔记总结

视频在这儿&#xff1a;https://blog.csdn.net/weixin_43996338/article/details/133771464 【视频来源于&#xff1a;B站up主孙帅suns Spring源码视频】【微信号&#xff1a;suns45】 【更多面试资料请加微信号&#xff1a;suns45】 https://flowus.cn/share/f6cd2cbe-627a-43…

微信小程序 js中写一个px单位转rpx单位的函数

大家写东西自然还是会比较喜欢用rpx 但是 事实证明 在js中 还是px好用 因为很多单位交互的函数还是只返回px单位的 理论上将 750 rpx 是整个屏幕的宽度 那么 我们可以这样写一个函数 pxToRpx(px) {//获取整个屏幕的宽度单位 pxlet screenWidth wx.getSystemInfoSync().scree…

Linux 回顾总结

学习前提&#xff08;环境搭建&#xff09;&#xff1a;RHCSA Linux环境搭建-CSDN博客 目录 一、shell 二、文件 三、用户和组管理 四、权限 五、软件 六、网络 七、磁盘 一、shell Linux的操作界面常称为Shell&#xff0c;Shell是操作系统提供给用户使用的界面&#xf…

土壤水分烘干法流程

土壤水分烘干法流程 叠小盒子装土 对折 得到一个正方形&#xff0c;裁掉多余的。然后将正方形按如下形式折 再次对折 然后再展开&#xff0c;对着折痕&#xff0c;竖立起盒子边缘 把上面的尖角翻下来 最后将多余的长条裁出一个盒子底部大小的小方块&#xff0c;放入盒子…

几种常见算法模式与场景应用

在计算机科学中&#xff0c;算法是解决问题的步骤和策略的集合。许多问题都可以通过使用算法解决&#xff0c;这些算法在解决问题的过程中会展现出一些共性和模式。以下是几种常见的算法模式以及它们在场景中的应用&#xff1a; 分治法 (Divide and Conquer) 分治法是一种将问题…

在Vue+Ts+Vite项目中如何配置别名指向不同的目录并引用

在VueTsVite项目中如何配置别名指向不同的目录并引用 vite.config.ts配置如下&#xff1a;tsconfig.json中需要配置baseUrl和paths,如下所示&#xff1a;项目中直接引入案例&#xff1a; vite.config.ts配置如下&#xff1a; import { defineConfig, AliasOptions } from vite…

绘制X-Bar-S和X-Bar-R图,监测过程,计算CPK过程能力指数

X-Bar-S图和X-Bar-R图是统计质量控制中常用的两种控制图&#xff0c;用于监测过程的稳定性和一致性。它们的主要区别在于如何计算和呈现数据的变化以及所关注的问题类型。 X-Bar-S图&#xff08;平均值与标准偏差图&#xff09;&#xff1a; X-Bar代表样本均值&#xff0c;S代表…

路由高级特性

项目拓扑与项目需求 项目需求 某企业网络使用ospf和isis作为IGP协议实现内部网络的互联互通&#xff0c;区域规划和IP规划如图所示&#xff0c;现在要求实现如下需求&#xff1a; LSW1和AR1使用vlan10互联&#xff0c;与AR2使用vlan20互联&#xff0c;LSW1与LSW2、3、4之间使…

spring boot RabbitMq基础教程

RabbitMq 由于RabbitMQ采用了AMQP协议&#xff0c;因此它具备跨语言的特性。任何语言只要遵循AMQP协议收发消息&#xff0c;都可以与RabbitMQ交互。并且RabbitMQ官方也提供了各种不同语言的客户端。 但是&#xff0c;RabbitMQ官方提供的Java客户端编码相对复杂&#xff0c;一般…

将vue项目打包成安卓app

目标&#xff1a;将vue项目打包成安卓app 工具&#xff1a;HbuilderX 1.在HbuilderX中创建一个 5App 项目 创建好的app项目目录 2.将vue项目打包 2.1 在 vue.config.js 中添加公共路径&#xff08;解决打包后的app图片不显示问题&#xff09; module.exports defineConfig(…