ELK 处理 SpringCloud 日志

在排查线上异常的过程中,查询日志总是必不可缺的一部分。现今大多采用的微服务架构,日志被分散在不同的机器上,使得日志的查询变得异常困难。工欲善其事,必先利其器。如果此时有一个统一的实时日志分析平台,那可谓是雪中送碳,必定能够提高我们排查线上问题的效率。本文带您了解一下开源的实时日志分析平台 ELK 的搭建及使用。

ELK 简介

ELK是一个开源的实时日志分析平台,它主要由 Elasticsearch、Logstash 和 Kiabana 三部分组成。

Logstash

Logstash 主要用于收集服务器日志,它是一个开源数据收集引擎,具有实时管道功能。Logstash 可以动态地将来自不同数据源的数据统一起来,并将数据标准化到您所选择的目的地。

插播一条,如果你近期准备面试跳槽,建议在ddkk.com在线刷题,涵盖 1万+ 道 Java 面试题,几乎覆盖了所有主流技术面试题,还有市面上最全的技术栈500套,精品系列教程,免费提供。

Logstash 收集数据的过程主要分为以下三个部分:

  • 输入:数据(包含但不限于日志)往往都是以不同的形式、格式存储在不同的系统中,而 Logstash 支持从多种数据源中收集数据(File、Syslog、MySQL、消息中间件等等)。

  • 过滤器:实时解析和转换数据,识别已命名的字段以构建结构,并将它们转换成通用格式。

  • 输出:Elasticsearch 并非存储的唯一选择,Logstash 提供很多输出选择。

Elasticsearch

Elasticsearch (ES)是一个分布式的 Restful 风格的搜索和数据分析引擎,它具有以下特点:

  • 查询:允许执行和合并多种类型的搜索 — 结构化、非结构化、地理位置、度量指标 — 搜索方式随心而变。

  • 分析:Elasticsearch 聚合让您能够从大处着眼,探索数据的趋势和模式。

  • 速度:很快,可以做到亿万级的数据,毫秒级返回。

  • 可扩展性:可以在笔记本电脑上运行,也可以在承载了 PB 级数据的成百上千台服务器上运行。

  • 弹性:运行在一个分布式的环境中,从设计之初就考虑到了这一点。

  • 灵活性:具备多个案例场景。支持数字、文本、地理位置、结构化、非结构化,所有的数据类型都欢迎。

Kibana

Kibana 可以使海量数据通俗易懂。它很简单,基于浏览器的界面便于您快速创建和分享动态数据仪表板来追踪 Elasticsearch 的实时数据变化。其搭建过程也十分简单,您可以分分钟完成 Kibana 的安装并开始探索 Elasticsearch 的索引数据 — 没有代码、不需要额外的基础设施。

对于以上三个组件在 《ELK 协议栈介绍及体系结构》 一文中有具体介绍,这里不再赘述。

在ELK 中,三大组件的大概工作流程如下图所示,由 Logstash 从各个服务中采集日志并存放至 Elasticsearch 中,然后再由 Kiabana 从 Elasticsearch 中查询日志并展示给终端用户。

插播一条,如果你近期准备面试跳槽,建议在ddkk.com在线刷题,涵盖 1万+ 道 Java 面试题,几乎覆盖了所有主流技术面试题,还有市面上最全的技术栈500套,精品系列教程,免费提供。

图1. ELK 的大致工作流程

图片

 

ELK 实现方案

通常情况下我们的服务都部署在不同的服务器上,那么如何从多台服务器上收集日志信息就是一个关键点了。本篇文章中提供的解决方案如下图所示:

图2. 本文提供的 ELK 实现方案

图片

 

如上图所示,整个 ELK 的运行流程如下:

1、 在微服务(产生日志的服务)上部署一个Logstash,作为Shipper角色,主要负责对所在机器上的服务产生的日志文件进行数据采集,并将消息推送到Redis消息队列;
2、 另用一台服务器部署一个Indexer角色的Logstash,主要负责从Redis消息队列中读取数据,并在Logstash管道中经过Filter的解析和处理后输出到Elasticsearch集群中存储;
3、 Elasticsearch主副节点之间数据同步;
4、 单独一台服务器部署Kibana读取Elasticsearch中的日志数据并展示在Web页面;

通过这张图,相信您已经大致清楚了我们将要搭建的 ELK 平台的工作流程,以及所需组件。下面就让我们一起开始搭建起来吧。

插播一条,如果你近期准备面试跳槽,建议在ddkk.com在线刷题,涵盖 1万+ 道 Java 面试题,几乎覆盖了所有主流技术面试题,还有市面上最全的技术栈500套,精品系列教程,免费提供。

ELK 平台搭建

本节主要介绍搭建 ELK 日志平台,包括安装 Indexer 角色的 Logstash,Elasticsearch 以及 Kibana 三个组件。完成本小节,您需要做如下准备:

1、 一台Ubuntu机器或虚拟机,作为入门教程,此处省略了Elasticsearch集群的搭建,且将Logstash(Indexer)、Elasticsearch以及Kibana安装在同一机器上;
2、 在Ubuntu上安装JDK,注意Logstash要求JDK在1.7版本以上;
3、 Logstash、Elasticsearch、Kibana安装包,您可以在此页面下载;

安装 Logstash

解压压缩包:

tar -xzvf logstash-7.3.0.tar.gz

显示更多简单用例测试,进入到解压目录,并启动一个将控制台输入输出到控制台的管道。

cd logstash-7.3.0
elk@elk:~/elk/logstash-7.3.0$ bin/logstash -e 'input { stdin {} } output { { stdout {} } }'

显示更多看到如下日志就意味着 Logstash 启动成功。

图3. Logstash 启动成功日志

图片

 

在控制台输入 Hello Logstash ,看到如下效果代表 Logstash 安装成功。

清单1. 验证 Logstash 是否启动成功Hello Logstash

{"@timestamp" => 2019-08-10T16:11:10.040Z,"host" => "elk","@version" => "1","message" => "Hello Logstash"
}
安装 Elasticsearch

解压安装包:

tar -xzvf elasticsearch-7.3.0-linux-x86_64.tar.gz

启动Elasticsearch:

cd elasticsearch-7.3.0/
bin/elasticsearch

在启动Elasticsearch 的过程中我遇到了两个问题在这里列举一下,方便大家排查。

问题一:内存过小,如果您的机器内存小于 Elasticsearch 设置的值,就会报下图所示的错误。解决方案是,修改 elasticsearch-7.3.0/config/jvm.options 文件中的如下配置为适合自己机器的内存大小,若修改后还是报这个错误,可重新连接服务器再试一次。

插播一条,如果你近期准备面试跳槽,建议在ddkk.com在线刷题,涵盖 1万+ 道 Java 面试题,几乎覆盖了所有主流技术面试题,还有市面上最全的技术栈500套,精品系列教程,免费提供。

图4. 内存过小导致 Elasticsearch 启动报错

图片

 

问题二,如果您是以 root 用户启动的话,就会报下图所示的错误。解决方案自然就是添加一个新用户启动 Elasticsearch,至于添加新用户的方法网上有很多,这里就不再赘述。

图5. Root 用户启动 Elasticsearch 报错

图片

 

启动成功后,另起一个会话窗口执行 curl http://localhost:9200 命令,如果出现如下结果,则代表 Elasticsearch 安装成功。

清单2. 检查 Elasticsearch 是否启动成功

elk@elk:~$ curl http://localhost:9200
{"name" : "elk","cluster_name" : "elasticsearch","cluster_uuid" : "hqp4Aad0T2Gcd4QyiHASmA","version" : {"number" : "7.3.0","build_flavor" : "default","build_type" : "tar","build_hash" : "de777fa","build_date" : "2019-07-24T18:30:11.767338Z","build_snapshot" : false,"lucene_version" : "8.1.0","minimum_wire_compatibility_version" : "6.8.0","minimum_index_compatibility_version" : "6.0.0-beta1"},"tagline" : "You Know, for Search"
}
安装 Kibana

解压安装包:

tar -xzvf kibana-7.3.0-linux-x86_64.tar.gz

修改配置文件 config/kibana.yml ,主要指定 Elasticsearch 的信息。

清单 3. Kibana 配置信息#Elasticsearch主机地址

elasticsearch.hosts: "http://ip:9200"
# 允许远程访问
server.host: "0.0.0.0"
# Elasticsearch用户名 这里其实就是我在服务器启动Elasticsearch的用户名
elasticsearch.username: "es"
# Elasticsearch鉴权密码 这里其实就是我在服务器启动Elasticsearch的密码
elasticsearch.password: "es"

启动Kibana:

cd kibana-7.3.0-linux-x86_64/bin
./kibana

在浏览器中访问 http://ip:5601 ,若出现以下界面,则表示 Kibana 安装成功。

图6. Kibana 启动成功界面

图片

 

ELK日志平台安装完成后,下面我们就将通过具体的例子来看下如何使用 ELK,下文将分别介绍如何将 Spring Boot 日志和 Nginx 日志交由 ELK 分析。

在 Spring Boot 中使用 ELK

首先我们需要创建一个 Spring Boot 的项目,之前我写过一篇文章介绍 如何使用 AOP 来统一处理 Spring Boot 的 Web 日志 ,本文的 Spring Boot 项目就建立在这篇文章的基础之上。

修改并部署 Spring Boot 项目

在项目resources 目录下创建 spring-logback.xml 配置文件。

清单4. Spring Boot 项目 Logback 的配置

<?xml version="1.0" encoding="UTF-8"?>
<configuration debug="false"><contextName>Logback For demo Mobile</contextName><property name="LOG_HOME" value="/log" /><springProperty scope="context" name="appName" source="spring.application.name"defaultValue="localhost" />...<appender name="ROLLING_FILE" class="ch.qos.logback.core.rolling.RollingFileAppender">...<encoder class="ch.qos.logback.classic.encoder.PatternLayoutEncoder"><pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} [%thread] %-5level %logger{25} ${appName} -%msg%n</pattern></encoder>...</appender>...
</configuration>

以上内容省略了很多内容,您可以在源码中获取。在上面的配置中我们定义了一个名为 ROLLING_FILE 的 Appender 往日志文件中输出指定格式的日志。而上面的 pattern 标签正是具体日志格式的配置,通过上面的配置,我们指定输出了时间、线程、日志级别、logger(通常为日志打印所在类的全路径)以及服务名称等信息。

将项目打包,并部署到一台 Ubuntu 服务器上。

清单5. 打包并部署 Spring Boot 项目

# 打包命令
mvn package -Dmaven.test.skip=true
# 部署命令
java -jar sb-elk-start-0.0.1-SNAPSHOT.jar

查看日志文件, logback 配置文件中我将日志存放在 /log/sb-log.log 文件中,执行 more /log/sb-log.log 命令,出现以下结果表示部署成功。

图7. Spring Boot 日志文件

图片

 

配置 Shipper 角色 Logstash

Spring Boot 项目部署成功之后,我们还需要在当前部署的机器上安装并配置 Shipper 角色的 Logstash。Logstash 的安装过程在 ELK 平台搭建小节中已有提到,这里不再赘述。安装完成后,我们需要编写 Logstash 的配置文件,以支持从日志文件中收集日志并输出到 Redis 消息管道中,Shipper 的配置如下所示。

清单6. Shipper 角色的 Logstash 的配置

input {file {path => [# 这里填写需要监控的文件"/log/sb-log.log"]}
}output {# 输出到redisredis {host => "10.140.45.190"   # redis主机地址port => 6379              # redis端口号db => 8                   # redis数据库编号data_type => "channel"    # 使用发布/订阅模式key => "logstash_list_0"  # 发布通道名称}
}

其实Logstash 的配置是与前面提到的 Logstash 管道中的三个部分(输入、过滤器、输出)一一对应的,只不过这里我们不需要过滤器所以就没有写出来。上面配置中 Input 使用的数据源是文件类型的,只需要配置上需要收集的本机日志文件路径即可。Output 描述数据如何输出,这里配置的是输出到 Redis。

插播一条,如果你近期准备面试跳槽,建议在ddkk.com在线刷题,涵盖 1万+ 道 Java 面试题,几乎覆盖了所有主流技术面试题,还有市面上最全的技术栈500套,精品系列教程,免费提供。

Redis 的配置 data_type 可选值有 channel 和 list 两个。channel 是 Redis 的发布/订阅通信模式,而 list 是 Redis 的队列数据结构,两者都可以用来实现系统间有序的消息异步通信。channel 相比 list 的好处是,解除了发布者和订阅者之间的耦合。举个例子,一个 Indexer 在持续读取 Redis 中的记录,现在想加入第二个 Indexer,如果使用 list ,就会出现上一条记录被第一个 Indexer 取走,而下一条记录被第二个 Indexer 取走的情况,两个 Indexer 之间产生了竞争,导致任何一方都没有读到完整的日志。channel 就可以避免这种情况。这里 Shipper 角色的配置文件和下面将要提到的 Indexer 角色的配置文件中都使用了 channel 。

配置 Indexer 角色 Logstash

配置好Shipper 角色的 Logstash 后,我们还需要配置 Indexer 角色 Logstash 以支持从 Redis 接收日志数据,并通过过滤器解析后存储到 Elasticsearch 中,其配置内容如下所示。

清单7. Indexer 角色的 Logstash 的配置

input {redis {host      => "192.168.142.131"    # redis主机地址port      => 6379               # redis端口号db        => 8                  # redis数据库编号data_type => "channel"          # 使用发布/订阅模式key       => "sb-logback"  # 发布通道名称}
}filter {#定义数据的格式grok {match => { "message" => "%{TIMESTAMP_ISO8601:time} \[%{NOTSPACE:threadName}\] %{LOGLEVEL:level}  %{DATA:logger} %{NOTSPACE:applicationName} -(?:.*=%{NUMBER:timetaken}ms|)"}}
}output {stdout {}elasticsearch {hosts => "localhost:9200"index => "logback"}
}

与Shipper 不同的是,Indexer 的管道中我们定义了过滤器,也正是在这里将日志解析成结构化的数据。下面是我截取的一条 logback 的日志内容:

清单8. Spring Boot 项目输出的一条日志

2019-08-11 18:01:31.602 [http-nio-8080-exec-2] INFO  c.i.s.aop.WebLogAspect sb-elk -接口日志
POST请求测试接口结束调用:耗时=11ms,result=BaseResponse{code=10000, message='操作成功'}

在Filter 中我们使用 Grok 插件从上面这条日志中解析出了时间、线程名称、Logger、服务名称以及接口耗时几个字段。Grok 又是如何工作的呢?

1、 message字段是Logstash存放收集到的数据的字段,match={"message"=>...}代表是对日志内容做处理;
2、 Grok实际上也是通过正则表达式来解析数据的,上面出现的TIMESTAMP_ISO8601、NOTSPACE等都是Grok内置的patterns;
3、 我们编写的解析字符串可以使用GrokDebugger来测试是否正确,这样避免了重复在真实环境中校验解析规则的正确性;

查看效果

经过上面的步骤,我们已经完成了整个 ELK 平台的搭建以及 Spring Boot 项目的接入。下面我们按照以下步骤执行一些操作来看下效果。

启动Elasticsearch,启动命令在 ELK 平台搭建 小节中有提到,这里不赘述(Kibana 启动同)。启动 Indexer 角色的 Logstash。

# 进入到 Logstash 的解压目录,然后执行下面的命令
bin/logstash -f indexer-logstash.conf

启动Kibana。

启动Shipper 角色的 Logstash。

# 进入到 Logstash 的解压目录,然后执行下面的命令
bin/logstash -f shipper-logstash.conf

调用Spring Boot 接口,此时应该已经有数据写入到 ES 中了。

在浏览器中访问 http://ip:5601 ,打开 Kibana 的 Web 界面,并且如下图所示添加 logback 索引。

图8. 在 Kibana 中添加 Elasticsearch 索引

图片

 

进入Discover 界面,选择 logback 索引,就可以看到日志数据了,如下图所示。

图9. ELK 日志查看

图片

 

在 Nginx 中使用 ELK

相信通过上面的步骤您已经成功的搭建起了自己的 ELK 实时日志平台,并且接入了 Logback 类型的日志。但是实际场景下,几乎不可能只有一种类型的日志,下面我们就再在上面步骤的基础之上接入 Nginx 的日志。当然这一步的前提是我们需要在服务器上安装 Nginx,具体的安装过程网上有很多介绍,这里不再赘述。查看 Nginx 的日志如下(Nginx 的访问日志默认在 /var/log/nginx/access.log 文件中)。

清单9. Nginx 的访问日志

192.168.142.1 - - [17/Aug/2019:21:31:43 +0800] "GET /weblog/get-test?name=elk HTTP/1.1"
200 3 "http://192.168.142.131/swagger-ui.html" "Mozilla/5.0 (Windows NT 10.0; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.100 Safari/537.36"

同样,我们需要为此日志编写一个 Grok 解析规则,如下所示:

清单10. 针对 Nginx 访问日志的 Grok 解析规则

%{IPV4:ip} \- \- \[%{HTTPDATE:time}\] "%{NOTSPACE:method} %{DATA:requestUrl}
HTTP/%{NUMBER:httpVersion}" %{NUMBER:httpStatus} %{NUMBER:bytes}
"%{DATA:referer}" "%{DATA:agent}"

完成上面这些之后的关键点是 Indexer 类型的 Logstash 需要支持两种类型的输入、过滤器以及输出,如何支持呢?首先需要给输入指定类型,然后再根据不同的输入类型走不同的过滤器和输出,如下所示(篇幅原因,配置文件在此没有全部展示,可以 点击此处获取 )。

清单11. 支持两种日志输入的 Indexer 角色的 Logstash 配置

input {redis {type      => "logback"...}redis {type       => "nginx"...}
}filter {if [type] == "logback" {...}if [type] == "nginx" {...}
}output {if [type] == "logback" {...}if [type] == "nginx" {...}
}

我的Nginx 与 Spring Boot 项目部署在同一台机器上,所以还需修改 Shipper 类型的 Logstash 的配置以支持两种类型的日志输入和输出,其配置文件的内容可 点击这里获取 。以上配置完成后,我们按照 查看效果 章节中的步骤,启动 ELK 平台、Shipper 角色的 Logstash、Nginx 以及 Spring Boot 项目,然后在 Kibana 上添加 Nignx 索引后就可同时查看 Spring Boot 和 Nginx 的日志了,如下图所示。

图10. ELK 查看 Nginx 日志

图片

 

ELK 启动

在上面的步骤中,ELK 的启动过程是我们一个一个的去执行三大组件的启动命令的。而且还是在前台启动的,意味着如果我们关闭会话窗口,该组件就会停止导致整个 ELK 平台无法使用,这在实际工作过程中是不现实的,我们剩下的问题就在于如何使 ELK 在后台运行。根据 《Logstash 最佳实践》 一书的推荐,我们将使用 Supervisor 来管理 ELK 的启停。首先我们需要安装 Supervisor,在 Ubuntu 上执行 apt-get install supervisor 即可。安装成功后,我们还需要在 Supervisor 的配置文件中配置 ELK 三大组件(其配置文件默认为 /etc/supervisor/supervisord.conf 文件)。

插播一条,如果你近期准备面试跳槽,建议在ddkk.com在线刷题,涵盖 1万+ 道 Java 面试题,几乎覆盖了所有主流技术面试题,还有市面上最全的技术栈500套,精品系列教程,免费提供。

清单12. ELK 后台启动

[program:elasticsearch]
environment=JAVA_HOME="/usr/java/jdk1.8.0_221/"
directory=/home/elk/elk/elasticsearch
user=elk
command=/home/elk/elk/elasticsearch/bin/elasticsearch[program:logstash]
environment=JAVA_HOME="/usr/java/jdk1.8.0_221/"
directory=/home/elk/elk/logstash
user=elk
command=/home/elk/elk/logstash/bin/logstash -f /home/elk/elk/logstash/indexer-logstash.conf[program:kibana]
environment=LS_HEAP_SIZE=5000m
directory=/home/elk/elk/kibana
user=elk
command=/home/elk/elk/kibana/bin/kibana

[按照以上内容配置完成后,执行 sudo supervisorctl reload 即可完成整个 ELK 的启动,而且其默认是开机自启。当然,我们也可以使用 sudo supervisorctl start/stop program_name] 来管理单独的应用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/100139.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Mall脚手架总结(三) —— MongoDB存储浏览数据

前言 通过Elasticsearch整合章节的学习&#xff0c;我们了解SpringData框架以及相应的衍生查询的方式操作数据读写的语法。MongoDB的相关操作也同样是借助Spring Data框架&#xff0c;因此这篇文章的内容比较简单&#xff0c;重点还是弄清楚MongoDB的使用场景以及如何通过Sprin…

【计算机网络】UDP协议编写群聊天室----附代码

UDP构建服务器 x 预备知识 认识UDP协议 此处我们也是对UDP(User Datagram Protocol 用户数据报协议)有一个直观的认识; 后面再详细讨论. 传输层协议无连接不可靠传输面向数据报 网络字节序 我们已经知道,内存中的多字节数据相对于内存地址有大端和小端之分, 磁盘文件中的…

扬尘监测:智能化解决方案让生活更美好

随着工业化和城市化的快速发展&#xff0c;扬尘污染问题越来越受到人们的关注。扬尘不仅影响城市环境&#xff0c;还会对人们的健康造成威胁。为了解决这一问题&#xff0c;扬尘监测成为了一个重要的手段。本文将介绍扬尘监测的现状、重要性以及智能化解决方案&#xff0c;帮助…

Python库学习(九):Numpy[续篇三]:数组运算

NumPy是用于数值计算的强大工具&#xff0c;提供了许多数组运算和数学函数&#xff0c;允许你执行各种操作&#xff0c;包括基本运算、统计计算、线性代数、元素级操作等 1.基本运算 1.1 四则运算 NumPy数组支持基本的四则运算&#xff08;加法、减法、乘法和除法&#xff09;…

Flink学习笔记(一):Flink重要概念和原理

文章目录 1、Flink 介绍2、Flink 概述3、Flink 组件介绍3.1、Deploy 物理部署层3.2、Runtime 核心层3.3、API&Libraries 层3.4、扩展库 4、Flink 四大基石4.1、Checkpoint4.2、State4.3、Time4.4、Window 5、Flink 的应用场景5.1、Event-driven Applications【事件驱动】5.…

初识 C语言文件操作

目录 前言&#xff1a; 为什么我们要使用文件&#xff1f; 什么是文件&#xff1f; 程序文件&#xff1a; 数据文件&#xff1a; 文件名&#xff1a; 文件的打开和关闭 文件指针&#xff1a; 流程&#xff1a; 文件路径&#xff1a; 文件的顺序读写&#xff1a; …

【Java 进阶篇】CSS语法格式详解

在前端开发中&#xff0c;CSS&#xff08;层叠样式表&#xff09;用于控制网页的样式和布局。了解CSS的语法格式是学习如何设计和美化网页的关键。本文将深入解释CSS的语法格式&#xff0c;包括选择器、属性和值等基本概念&#xff0c;同时提供示例代码以帮助初学者更好地理解。…

首批成员单位 | 聚铭网络受邀加入中国人工智能产业发展联盟数据委员会

近日&#xff0c;中国人工智能产业发展联盟(简称AIIA&#xff09;成立“数据委员会”&#xff0c;**聚铭网络受邀加入&#xff0c;成为首批成员单位&#xff0c;**与其他成员单位协同推动人工智能产业发展。 中国人工智能产业发展联盟是在国家发展和改革委员会、科学技术部、工…

Python Opencv实践 - 车辆识别(1)读取视频,移除背景,做预处理

示例中的图像的腐蚀、膨胀和闭运算等需要根据具体视频进行实验得到最佳效果。代码仅供参考。 import cv2 as cv import numpy as np#读取视频文件 video cv.VideoCapture("../../SampleVideos/Traffic.mp4") FPS 10 DELAY int(1000 / FPS) kernel cv.getStructu…

VSCode Intellij IDEA CE 数据库连接

VSCode & Intellij IDEA CE 数据库连接 大概记一下现在正在用的几个工具/插件 VSCode VSCode 里面的工具我下载了很多&#xff0c;如果只是链接 MySQL 的话&#xff0c;可能用 Jun Han 这位大佬的 MySQL 就好了&#xff1a; 使用这个插件直接打开 .sql 文件单击运行就能…

制作电商页面(Html)

任务 制作一个电商页面&#xff0c;要求所卖物品清晰&#xff0c;页面色调清晰&#xff0c;要有主页和详情页。 网站所买物品&#xff1a;书籍 色调&#xff1a;#FF2400 橙红色 代码 主页HTML代码&#xff1a; <html><head><meta charset"utf-8"…

CentOS Stream9 安装远程桌面服务 Xrdp

1. 安装 XRDP 若服务器本身没有桌面则首先需要安装本地桌面&#xff1a; yum -y groups install "GNOME Desktop" startx配置源&#xff1a; dnf install epel-release安装 xrdp dnf install xrdp 2. 配置 Xrdp Xrdp 配置文件位于 /etc/xrdp 目录中。对于常规 X…

NoSQL数据库(林子雨慕课课程)

文章目录 5.1 NoSQL数据库5.2 NoSQL和关系数据库的比较5.3 四大类型NoSQL数据库5.3.1 键值数据库和列族数据库5.3.2 文档数据库、图数据库、以及不同数据库比较分析 5.4 NoSQL数据库的理论基石CAP理论&#xff1a;BASE理论&#xff1a;Eventual consistency&#xff08;最终一致…

Java架构师高并发架构设计

目录 1 导学2 什么是高并发问题3 高并发处理之道4 akf扩展立方体5 细化理念应对高并发5 总结1 导学 本章的主要内容是大型系统架构设计的难点之一,高并发架构设计相关的知识落到实际项目上,就是订单系统的高并发架构设计。我们首先会去学习到底何为高并发问题,先把问题搞清楚…

多线程(线程互斥)

抢票代码编写 学习了前面有关线程库的操作后&#xff0c;我们就可以模拟抢票的过程 假设我们创建四个线程&#xff0c;分别代表我们的用户 然后设定总票数为1000张&#xff0c;四个线程分别将进行循环抢票操作&#xff0c;其实就是循环对票数进行打印&#xff0c;并进行对应的…

强化学习问题(二)--- ERROR: Failed building wheel for box2d-py

错误&#xff1a;Could not build wheels for box2d-py, which is required to install pyproject.toml-based projects pyproject.toml-based projects&#xff1a;意思是缺少依赖包&#xff0c;对于box2d就是缺少swig 注意&#xff1a;安装python对应的swig版本 解决1&…

Linux线程安全

线程安全 Linux线程互斥进程线程间的互斥相关背景概念互斥量mutex互斥量的接口互斥量实现原理探究 可重入VS线程安全概念常见的线程不安全的情况常见的线程安全的情况常见的不可重入的情况常见的可重入的情况可重入与线程安全联系可重入与线程安全区别 常见锁概念死锁死锁的四个…

Unity 捕鱼游戏开发教程与源码

效果图展示 项目分析 主要功能点&#xff1a; 鱼的移动路线 这里使用简单移动的方式&#xff1a;随机位置然后随机鱼直线或者每帧更新鱼的角度实现走圆形。枪随着鼠标或点击位置移动 这个用坐标转换参考代码 private void Update(){Vector3 mousePos; // 鼠标位置// RectTra…

牛津大学海外学习:14天的知识与文化之旅

牛津——一个充满学术氛围与古老传统的城市&#xff0c;对于我这次14天的海外学习经验来说&#xff0c;这里每一个角落都隐藏着知识和历史的故事。作为中国的一名学生&#xff0c;能够在这里学习、生活&#xff0c;真是一次难得的机会。 我报名的是《人工智能》课程&#xff0…

ElasticSearch 学习7 集成ik分词器

网上找了一大堆&#xff0c;很多都介绍的不详细&#xff0c;开始安装完一直报错找不到plugin-descriptor.properties&#xff0c;有些懵这个东西不应该带在里面吗&#xff0c;参考了一篇博客说新建一个这个&#xff0c;新建完可以启动&#xff0c;但是插入索引数据会报错找不到…