MySQL数据库经典面试题解析

1. MySQL 索引使用有哪些注意事项呢?

可以从三个维度回答这个问题:索引哪些情况会失效,索引不适合哪些场景,索引规则

索引哪些情况会失效

  • 查询条件包含or,可能导致索引失效
  • 如何字段类型是字符串,where时一定用引号括起来,否则索引失效
  • like通配符可能导致索引失效。
  • 联合索引,查询时的条件列不是联合索引中的第一个列,索引失效。
  • 在索引列上使用mysql的内置函数,索引失效。
  • 对索引列运算(如,+、-、*、/),索引失效。
  • 索引字段上使用(!= 或者 < >,not in)时,可能会导致索引失效。
  • 索引字段上使用is null, is not null,可能导致索引失效。
  • 左连接查询或者右连接查询查询关联的字段编码格式不一样,可能导致索引失效。
  • mysql估计使用全表扫描要比使用索引快,则不使用索引。

索引不适合哪些场景

  • 数据量少的不适合加索引
  • 更新比较频繁的也不适合加索引
  • 区分度低的字段不适合加索引(如性别)

索引的一些潜规则

  • 覆盖索引
  • 回表
  • 索引数据结构(B+树)
  • 最左前缀原则
  • 索引下推

2. MySQL 遇到过死锁问题吗,你是如何解决的?

我排查死锁的一般步骤是酱紫的:

  • 查看死锁日志show engine innodb status;
  • 找出死锁Sql
  • 分析sql加锁情况
  • 模拟死锁案发
  • 分析死锁日志
  • 分析死锁结果

3. 日常工作中你是怎么优化SQL的?

可以从这几个维度回答这个问题:

  • 加索引
  • 避免返回不必要的数据
  • 适当分批量进行
  • 优化sql结构
  • 分库分表
  • 读写分离

4. 说说分库与分表的设计

分库分表方案,分库分表中间件,分库分表可能遇到的问题

分库分表方案:

  • 水平分库:以字段为依据,按照一定策略(hash、range等),将一个库中的数据拆分到多个库中。
  • 水平分表:以字段为依据,按照一定策略(hash、range等),将一个表中的数据拆分到多个表中。
  • 垂直分库:以表为依据,按照业务归属不同,将不同的表拆分到不同的库中。
  • 垂直分表:以字段为依据,按照字段的活跃性,将表中字段拆到不同的表(主表和扩展表)中。

常用的分库分表中间件:

  • sharding-jdbc(当当)
  • Mycat
  • TDDL(淘宝)
  • Oceanus(58同城数据库中间件)
  • vitess(谷歌开发的数据库中间件)
  • Atlas(Qihoo 360)

分库分表可能遇到的问题

  • 事务问题:需要用分布式事务啦
  • 跨节点Join的问题:解决这一问题可以分两次查询实现
  • 跨节点的count,order by,group by以及聚合函数问题:分别在各个节点上得到结果后在应用程序端进行合并。
  • 数据迁移,容量规划,扩容等问题
  • ID问题:数据库被切分后,不能再依赖数据库自身的主键生成机制啦,最简单可以考虑UUID
  • 跨分片的排序分页问题(后台加大pagesize处理?)

5. InnoDB与MyISAM的区别

  • InnoDB支持事务,MyISAM不支持事务
  • InnoDB支持外键,MyISAM不支持外键
  • InnoDB 支持 MVCC(多版本并发控制),MyISAM 不支持
  • select count(*) from table时,MyISAM更快,因为它有一个变量保存了整个表的总行数,可以直接读取,InnoDB就需要全表扫描。
  • Innodb不支持全文索引,而MyISAM支持全文索引(5.7以后的InnoDB也支持全文索引)
  • InnoDB支持表、行级锁,而MyISAM支持表级锁。
  • InnoDB表必须有主键,而MyISAM可以没有主键
  • Innodb表需要更多的内存和存储,而MyISAM可被压缩,存储空间较小,。
  • Innodb按主键大小有序插入,MyISAM记录插入顺序是,按记录插入顺序保存。
  • InnoDB 存储引擎提供了具有提交、回滚、崩溃恢复能力的事务安全,与 MyISAM 比 InnoDB 写的效率差一些,并且会占用更多的磁盘空间以保留数据和索引
  • InnoDB 属于索引组织表,使用共享表空间和多表空间储存数据。MyISAM用.frm.MYD.MTI来储存表定义,数据和索引。

6. 数据库索引的原理,为什么要用 B+树,为什么不用二叉树?

可以从几个维度去看这个问题,查询是否够快,效率是否稳定,存储数据多少,以及查找磁盘次数,为什么不是二叉树,为什么不是平衡二叉树,为什么不是B树,而偏偏是B+树呢?

为什么不是一般二叉树?

如果二叉树特殊化为一个链表,相当于全表扫描。平衡二叉树相比于二叉查找树来说,查找效率更稳定,总体的查找速度也更快。

为什么不是平衡二叉树呢?

我们知道,在内存比在磁盘的数据,查询效率快得多。如果树这种数据结构作为索引,那我们每查找一次数据就需要从磁盘中读取一个节点,也就是我们说的一个磁盘块,但是平衡二叉树可是每个节点只存储一个键值和数据的,如果是B树,可以存储更多的节点数据,树的高度也会降低,因此读取磁盘的次数就降下来啦,查询效率就快啦。

那为什么不是B树而是B+树呢?

  • 1)B+树非叶子节点上是不存储数据的,仅存储键值,而B树节点中不仅存储键值,也会存储数据。innodb中页的默认大小是16KB,如果不存储数据,那么就会存储更多的键值,相应的树的阶数(节点的子节点树)就会更大,树就会更矮更胖,如此一来我们查找数据进行磁盘的IO次数有会再次减少,数据查询的效率也会更快。
  • 2)B+树索引的所有数据均存储在叶子节点,而且数据是按照顺序排列的,链表连着的。那么B+树使得范围查找,排序查找,分组查找以及去重查找变得异常简单。

7. 聚集索引与非聚集索引的区别

  • 一个表中只能拥有一个聚集索引,而非聚集索引一个表可以存在多个。
  • 聚集索引,索引中键值的逻辑顺序决定了表中相应行的物理顺序;非聚集索引,索引中索引的逻辑顺序与磁盘上行的物理存储顺序不同。
  • 索引是通过二叉树的数据结构来描述的,我们可以这么理解聚簇索引:索引的叶节点就是数据节点。而非聚簇索引的叶节点仍然是索引节点,只不过有一个指针指向对应的数据块。
  • 聚集索引:物理存储按照索引排序;非聚集索引:物理存储不按照索引排序;

何时使用聚集索引或非聚集索引?
在这里插入图片描述

8. limit 1000000 加载很慢的话,你是怎么解决的呢?

方案一:如果id是连续的,可以这样,返回上次查询的最大记录(偏移量),再往下limit

select id,name from employee where id>1000000 limit 10.

方案二:在业务允许的情况下限制页数:

建议跟业务讨论,有没有必要查这么后的分页啦。因为绝大多数用户都不会往后翻太多页。

方案三:order by + 索引(id为索引)

select id,name from employee order by id  limit 100000010
SELECT a.* FROM employee a, (select id from employee where 条件 LIMIT 1000000,10 ) b where a.id=b.id

方案四:利用延迟关联或者子查询优化超多分页场景。(先快速定位需要获取的id段,然后再关联)

9. 如何选择合适的分布式主键方案呢?

  • 数据库自增长序列或字段。
  • UUID。
  • Redis生成ID
  • Twitter的snowflake算法
  • 利用zookeeper生成唯一ID
  • MongoDB的ObjectId

10. 事务的隔离级别有哪些?MySQL的默认隔离级别是什么?

  • 读未提交(Read Uncommitted)
  • 读已提交(Read Committed)
  • 可重复读(Repeatable Read)
  • 串行化(Serializable)

Mysql默认的事务隔离级别是可重复读(Repeatable Read)

11. 什么是幻读,脏读,不可重复读呢?

  • 事务A、B交替执行,事务A被事务B干扰到了,因为事务A读取到事务B未提交的数据,这就是脏读
  • 在一个事务范围内,两个相同的查询,读取同一条记录,却返回了不同的数据,这就是不可重复读。
  • 事务A查询一个范围的结果集,另一个并发事务B往这个范围中插入/删除了数据,并静悄悄地提交,然后事务A再次查询相同的范围,两次读取得到的结果集不一样了,这就是幻读。

12. 在高并发情况下,如何做到安全的修改同一行数据?

要安全的修改同一行数据,就要保证一个线程在修改时其它线程无法更新这行记录。一般有悲观锁和乐观锁两种方案~

使用悲观锁

悲观锁思想就是,当前线程要进来修改数据时,别的线程都得拒之门外~
比如,可以使用select…for update ~

select * from User where name=‘jay’ for update

以上这条sql语句会锁定了User表中所有符合检索条件(name=‘jay’)的记录。本次事务提交之前,别的线程都无法修改这些记录。

使用乐观锁

乐观锁思想就是,有线程过来,先放过去修改,如果看到别的线程没修改过,就可以修改成功,如果别的线程修改过,就修改失败或者重试。实现方式:乐观锁一般会使用版本号机制或CAS算法实现。

13. 数据库的乐观锁和悲观锁。

悲观锁:

悲观锁她专一且缺乏安全感了,她的心只属于当前事务,每时每刻都担心着它心爱的数据可能被别的事务修改,所以一个事务拥有(获得)悲观锁后,其他任何事务都不能对数据进行修改啦,只能等待锁被释放才可以执行。
在这里插入图片描述

乐观锁:

乐观锁的“乐观情绪”体现在,它认为数据的变动不会太频繁。因此,它允许多个事务同时对数据进行变动。实现方式:乐观锁一般会使用版本号机制或CAS算法实现。
在这里插入图片描述

14. SQL优化的一般步骤是什么,怎么看执行计划(explain),如何理解其中各个字段的含义。

  • show status 命令了解各种 sql 的执行频率
  • 通过慢查询日志定位那些执行效率较低的 sql 语句
  • explain 分析低效 sql 的执行计划(这点非常重要,日常开发中用它分析Sql,会大大降低Sql导致的线上事故)

15. select for update有什么含义,会锁表还是锁行还是其他。

select for update 含义

select查询语句是不会加锁的,但是select for update除了有查询的作用外,还会加锁呢,而且它是悲观锁哦。至于加了是行锁还是表锁,这就要看是不是用了索引/主键啦。
没用索引/主键的话就是表锁,否则就是是行锁。

16. MySQL事务得四大特性以及实现原理

在这里插入图片描述

  • 原子性: 事务作为一个整体被执行,包含在其中的对数据库的操作要么全部被执行,要么都不执行。
  • 一致性: 指在事务开始之前和事务结束以后,数据不会被破坏,假如A账户给B账户转10块钱,不管成功与否,A和B的总金额是不变的。
  • 隔离性: 多个事务并发访问时,事务之间是相互隔离的,即一个事务不影响其它事务运行效果。简言之,就是事务之间是进水不犯河水的。
  • 持久性: 表示事务完成以后,该事务对数据库

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/77022.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C#结合SQLite数据库使用方法

一、关于SQLite SQLite 是一个轻量级的嵌入式关系型数据库管理系统&#xff08;RDBMS&#xff09;。与传统的数据库管理系统&#xff08;如 MySQL、PostgreSQL 或 SQL Server&#xff09;不同&#xff0c;SQLite 并不需要运行单独的服务器进程&#xff0c;它的数据库存储在一个…

深入解析 MySQL 中的日期时间函数:DATE_FORMAT 与时间查询优化

深入解析 MySQL 中的日期时间函数&#xff1a;DATE_FORMAT 与时间查询优化 在数据库管理和应用开发中&#xff0c;日期和时间的处理是不可或缺的一部分。MySQL 提供了多种日期和时间函数来满足不同的需求&#xff0c;其中DATE_FORMAT函数以其强大的日期格式化能力&#xff0c;…

如何深刻理解Reactor和Proactor

前言&#xff1a; 网络框架的设计离不开 I/O 线程模型&#xff0c;线程模型的优劣直接决定了系统的吞吐量、可扩展性、安全性等。目前主流的网络框架&#xff0c;在网络 IO 处理层面几乎都采用了I/O 多路复用方案(又以epoll为主)&#xff0c;这是服务端应对高并发的性能利器。 …

笔试专题(七)

文章目录 乒乓球筐&#xff08;哈希&#xff09;题解代码 组队竞赛题解代码 删除相邻数字的最大分数&#xff08;线性dp&#xff09;题解代码 乒乓球筐&#xff08;哈希&#xff09; 题目链接 题解 1. 两个哈希表 先统计第一个字符串中的字符个数&#xff0c;再统计第二个字…

清晰易懂的 Flutter 卸载和清理教程

以下是为 Flutter 彻底卸载与清理教程&#xff0c;覆盖 Windows、macOS、Linux 系统&#xff0c;步骤清晰无残留&#xff0c;确保完全删除 Flutter SDK、依赖工具及 IDE 配置。 一、通用步骤&#xff1a;确认 Flutter 安装方式 Flutter 通常通过以下方式安装&#xff1a; 手动…

关于反卷积

&#x1f9e0; 什么是反卷积&#xff1f; 反卷积&#xff08;Deconvolution&#xff09;&#xff0c;通常也称为转置卷积&#xff08;Transpose Convolution&#xff09;&#xff0c;是一种用于扩展输入特征图的操作&#xff0c;通常用于生成图像或上采样任务中。与标准卷积操…

【机器学习】ROC 曲线与 PR 曲线

目录 一、混淆矩阵&#xff1a;分类评估的基础 二. ROC 曲线 (Receiver Operating Characteristic Curve) 三. PR 曲线 (Precision-Recall Curve) 3.1 核心思想 4. 何时使用 ROC 曲线和 PR 曲线&#xff1f; 实验结果 6. 总结 在机器学习的分类任务中&#xff0c;我们训…

Python高阶函数-map

map() 是 Python 内置的一个高阶函数&#xff0c;它接收一个函数和一个可迭代对象作为参数&#xff0c;将函数依次作用在可迭代对象的每个元素上&#xff0c;并返回一个迭代器&#xff08;Python 3.x 中&#xff09;。 基本语法 map(function, iterable, ...)function: 应用于…

上海餐饮市场数据分析与可视化

上海作为中国的经济中心和国际化大都市,其餐饮市场具有高度的多样性和竞争性。随着消费者需求的不断变化,餐饮行业的从业者和投资者需要深入了解市场现状和趋势,以便制定更有效的商业策略。本文将通过数据分析和可视化技术,深入探讨上海餐饮市场的现状和趋势,为餐饮从业者…

MySQL基础 [五] - 表的增删查改

目录 Create&#xff08;insert&#xff09; Retrieve&#xff08;select&#xff09; where条件 ​编辑 NULL的查询 结果排序(order by) 筛选分页结果 (limit) Update Delete 删除表 截断表&#xff08;truncate&#xff09; 插入查询结果&#xff08;insertselect&…

SQL:Primary Key(主键)和Foreign Key(外键)

目录 1. Key&#xff08;键&#xff09; 2. Index&#xff08;索引&#xff09; 3.Key和Index的区别 4. Primary Key&#xff08;主键&#xff09; 5. Foreign Key&#xff08;外键&#xff09; 6.主键和外键的关系 温馨提示&#xff1a; 闪电按钮不同的执行功能 首先&…

2025年- H1-Lc109-160. 相交列表--java版

1.题目描述 2.思路 “双指针切换链表头” 思路一&#xff1a;双指针路径对齐 while (pA ! pB) { pA (pA null) ? headB : pA.next; pB (pB null) ? headA : pB.next; } 让两个指针走相同的总路径长度&#xff01; 设&#xff1a; 链表 A 独有部分长度是 lenA 链表 B …

PyTorch 深度学习 || 6. Transformer | Ch6.3 Transformer 简单案例

1. 简单案例 这个代码是一个简单的 Transformer 模型的实现,这个例子展示了一个基本的序列到序列(seq2seq)任务,比如将一个数字序列转换为另一个数字序列。可以用于学习和理解 Transformer 的基本结构和工作原理。 import torch import torch.nn as nn import math# 位置…

基础算法篇(4)(蓝桥杯常考点)—数据结构(进阶)

前言 这期将会讲到基础算法篇里面的数据结构&#xff08;进阶&#xff09;&#xff0c;主要包括单调栈&#xff0c;单调队列&#xff0c;并查集&#xff0c;扩展域并查集&#xff0c;带权并查集&#xff0c;字符串哈希&#xff0c;Trie树。 数据结构(进阶&#xff09;正文 单…

【AI学习】初步了解Gradio

Gradio 是一个开源的 Python 库&#xff0c;专注于快速构建交互式 Web 界面&#xff0c;特别适用于机器学习模型、数据科学项目或任意 Python 函数的演示与部署。它通过极简的代码实现前后端一体化&#xff0c;无需前端开发经验即可创建功能丰富的应用。以下是 Gradio 的核心特…

Overleaf 论文提交 Arxiv

Contents References 清除 Overleaf 中所有编译 error&#xff0c;并且保证 main.tex 文件在 project 最上层参考文件 .bib 转 .bbl. project 编译成功后可以在 Overleaf 的 Recompile 按钮右侧找到 “Logs and output files”&#xff0c;点进去之后右下角可以点开 “Other lo…

【Android Audio】Parameter Framework - pfw

Parameter Framework - Android AudioPolicy Engine 使用 libengineconfigurable.so 来取缔默认安卓音频引擎 libenginedefault.so&#xff0c;因为默认安卓音频引擎是通过代码来决定策略&#xff0c;然而 libengineconfigurable 采用读取pfw类型的文件来实现音频策略配置。 …

服务器虚拟化技术深度解析:医药流通行业IT架构优化指南

一、服务器虚拟化的定义与原理 &#xff08;一&#xff09;技术定义&#xff1a;从物理到虚拟的资源重构 服务器虚拟化是通过软件层&#xff08;Hypervisor&#xff09;将物理服务器的CPU、内存、存储、网络等硬件资源抽象为逻辑资源池&#xff0c;分割成多个相互隔离的虚拟机…

babel-runtime 如何缩小打包体积

&#x1f916; 作者简介&#xff1a;水煮白菜王&#xff0c;一位前端劝退师 &#x1f47b; &#x1f440; 文章专栏&#xff1a; 前端专栏 &#xff0c;记录一下平时在博客写作中&#xff0c;总结出的一些开发技巧和知识归纳总结✍。 感谢支持&#x1f495;&#x1f495;&#…

剑指Offer(数据结构与算法面试题精讲)C++版——day7

剑指Offer&#xff08;数据结构与算法面试题精讲&#xff09;C版——day7 题目一&#xff1a;最多删除一个字符得到回文题目二&#xff1a;回文子字符串的个数题目三&#xff1a;删除倒数第k个节点 题目一&#xff1a;最多删除一个字符得到回文 这里我们可以在经典的字符串回文…