【深度学习】DeepSeek模型介绍与部署

原文链接:DeepSeek-V3

1. 介绍

DeepSeek-V3,一个强大的混合专家 (MoE) 语言模型,拥有 671B 总参数,其中每个 token 激活 37B 参数。
为了实现高效推理和成本效益的训练,DeepSeek-V3 采用了多头潜在注意力 (MLA) 和 DeepSeekMoE 架构,这些架构在 DeepSeek-V2 中得到了充分验证。
此外,DeepSeek-V3 首次提出了无辅助损失的负载平衡策略,并设置了多 token 预测训练目标,以增强性能。
我们在 14.8 万亿多样且高质量的 token 上预训练了 DeepSeek-V3,之后进行了监督微调和强化学习阶段,以充分发挥其能力。
全面评估表明,DeepSeek-V3 超越了其他开源模型,并且在性能上与领先的闭源模型相当。
尽管性能卓越,DeepSeek-V3 的完整训练仅需要 2.788M H800 GPU 小时。
此外,其训练过程非常稳定。在整个训练过程中,我们没有遇到任何无法恢复的损失峰值,也没有执行任何回滚操作。

2. 模型总结


架构:创新的负载平衡策略与训练目标

  • 在 DeepSeek-V2 高效架构的基础上,我们首次提出了一种无辅助损失的负载平衡策略,最小化了由于负载平衡而导致的性能下降。
  • 我们研究了多 token 预测(MTP)目标,并证明它对模型性能有益。
    它还可用于推理加速的推测解码。

预训练:追求极致的训练效率

  • 我们设计了一个 FP8 混合精度训练框架,并首次验证了在极大规模模型上使用 FP8 训练的可行性和有效性。
  • 通过算法、框架和硬件的共同设计,我们克服了跨节点 MoE 训练中的通信瓶颈,几乎实现了计算与通信的完全重叠。
    这大大提高了我们的训练效率,并减少了训练成本,使我们能够在不增加额外开销的情况下进一步扩展模型规模。
  • 在仅需 2.664M H800 GPU 小时的经济成本下,我们完成了 DeepSeek-V3 在 14.8T tokens 上的预训练,生产出当前最强大的开源基础模型。预训练后的后续训练阶段仅需 0.1M GPU 小时。

后训练:从 DeepSeek-R1 中蒸馏知识

  • 我们引入了一种创新的方法,从长链思维(CoT)模型中提取推理能力,特别是从 DeepSeek R1 系列模型中,将其蒸馏到标准 LLM,特别是 DeepSeek-V3。我们的流程巧妙地将 R1 的验证和反思模式整合到 DeepSeek-V3 中,显著提高了其推理能力。同时,我们也控制了 DeepSeek-V3 输出的风格和长度。

3. 模型下载

模型总参数激活参数上下文长度下载
DeepSeek-V3-Base671B37B128K🤗 Hugging Face
DeepSeek-V3671B37B128K🤗 Hugging Face

[!NOTE]
DeepSeek-V3 模型在 Hugging Face 上的总大小为 685B,其中包含 671B 的主模型权重和 14B 的多 token 预测(MTP)模块权重。

为了确保最佳的性能和灵活性,我们与开源社区和硬件供应商合作,提供了多种方式以在本地运行模型。有关详细的步骤,请参阅第 6 节:如何在本地运行。

对于希望深入了解的开发者,我们建议查看 README_WEIGHTS.md,了解有关主模型权重和多 token 预测(MTP)模块的更多细节。请注意,MTP 支持目前仍在社区开发中,我们欢迎您的贡献和反馈。

4. 评估结果

基础模型

标准基准测试
基准(指标)样本数量DeepSeek-V2Qwen2.5 72BLLaMA3.1 405BDeepSeek-V3
架构-MoEDenseDenseMoE
激活参数-21B72B405B37B
总参数-236B72B405B671B
英文Pile-test (BPB)-0.6060.6380.5420.548
BBH (EM)3-shot78.879.882.987.5
MMLU (Acc.)5-shot78.485.084.487.1
MMLU-Redux (Acc.)5-shot75.683.281.386.2
MMLU-Pro (Acc.)5-shot51.458.352.864.4
DROP (F1)3-shot80.480.686.089.0
ARC-Easy (Acc.)25-shot97.698.498.498.9
ARC-Challenge (Acc.)25-shot92.294.595.395.3
HellaSwag (Acc.)10-shot87.184.889.288.9
PIQA (Acc.)0-shot83.982.685.984.7
WinoGrande (Acc.)5-shot86.382.385.284.9
RACE-Middle (Acc.)5-shot73.168.174.267.1
RACE-High (Acc.)5-shot52.650.356.851.3
TriviaQA (EM)5-shot80.071.982.782.9
NaturalQuestions (EM)5-shot38.633.241.540.0
AGIEval (Acc.)0-shot57.575.860.679.6
编程HumanEval (Pass@1)0-shot43.353.054.965.2
MBPP (Pass@1)3-shot65.072.668.475.4
LiveCodeBench-Base (Pass@1)3-shot11.612.915.519.4
CRUXEval-I (Acc.)2-shot52.559.158.567.3
CRUXEval-O (Acc.)2-shot49.859.959.969.8
数学GSM8K (EM)8-shot81.688.383.589.3
MATH (EM)4-shot43.454.449.061.6
MGSM (EM)8-shot63.676.269.979.8
CMath (EM)3-shot78.784.577.390.7
中文CLUEWSC (EM)5-shot82.082.583.082.7
C-Eval (Acc.)5-shot81.489.272.590.1
CMMLU (Acc.)5-shot84.089.573.788.8
CMRC (EM)1-shot77.475.876.076.3
C3 (Acc.)0-shot77.476.779.778.6
CCPM (Acc.)0-shot93.088.578.692.0
多语言MMMLU-non-English (Acc.)5-shot64.074.873.879.4

[!NOTE]
最佳结果用粗体显示。得分差距不超过 0.3 的被认为在同一水平上。DeepSeek-V3 在大多数基准测试中都取得了最佳表现,特别是在数学和编程任务上。
有关更多评估详情,请查阅我们的论文。

上下文窗口

在“Needle In A Haystack”(NIAH)测试中的评估结果。DeepSeek-V3 在所有上下文窗口长度(最多 128K)上表现良好。

聊天模型

标准基准(大于 67B 的模型)
基准(指标)DeepSeek V2-0506DeepSeek V2.5-0905Qwen2.5 72B-Inst.Llama3.1 405B-Inst.Claude-3.5-Sonnet-1022GPT-4o 0513DeepSeek V3
架构MoEMoEDenseDense--MoE
激活参数21B21B72B405B--37B
总参数236B236B72B405B--671B
英文MMLU (EM)78.280.685.388.688.387.288.5
MMLU-Redux (EM)77.980.385.686.288.988.089.1
MMLU-Pro (EM)58.566.271.673.378.072.675.9
DROP (3-shot F1)83.087.876.788.788.383.791.6
IF-Eval (Prompt Strict)57.780.684.186.086.584.386.1
GPQA-Diamond (Pass@1)35.341.349.051.165.049.959.1
SimpleQA (Correct)9.010.29.117.128.438.224.9
FRAMES (Acc.)66.965.469.870.072.580.573.3
LongBench v2 (Acc.)31.635.439.436.141.048.148.7
编程HumanEval-Mul (Pass@1)69.377.477.377.281.780.582.6
LiveCodeBench (Pass@1-COT)18.829.231.128.436.333.440.5
LiveCodeBench (Pass@1)20.328.428.730.132.834.237.6
Codeforces (Percentile)17.535.624.825.320.323.651.6
SWE Verified (Resolved)-22.623.824.550.838.842.0
Aider-Edit (Acc.)60.371.665.463.984.272.979.7
Aider-Polyglot (Acc.)-18.27.65.845.316.049.6
数学AIME 2024 (Pass@1)4.616.723.323.316.09.339.2
MATH-500 (EM)56.374.780.073.878.374.690.2
CNMO 2024 (Pass@1)2.810.815.96.813.110.843.2
中文CLUEWSC (EM)89.990.491.484.785.487.990.9
C-Eval (EM)78.679.586.161.576.776.086.5
C-SimpleQA (Correct)48.554.148.450.451.359.364.8

[!NOTE]
所有模型均在限制输出长度为 8K 的配置下进行评估。包含不到 1000 个样本的基准测试进行了多次测试,使用不同的温度设置以得出可靠的最终结果。DeepSeek-V3 是表现最好的开源模型,也在与前沿闭源模型的性能对比中表现出色。

开放式生成评估
模型Arena-HardAlpacaEval 2.0
DeepSeek-V2.5-090576.250.5
Qwen2.5-72B-Instruct81.249.1
LLaMA-3.1 405B69.340.5
GPT-4o-051380.451.1
Claude-Sonnet-3.5-102285.252.0
DeepSeek-V385.570.0

[!NOTE]
英文开放式对话评估。对于 AlpacaEval 2.0,我们使用长度控制的胜率作为评估指标。

5. 聊天网站与 API 平台

你可以在 DeepSeek 官方网站与 DeepSeek-V3 进行聊天:chat.deepseek.com

我们还在 DeepSeek 平台提供了兼容 OpenAI 的 API:platform.deepseek.com

6. 如何在本地运行

DeepSeek-V3 可以通过以下硬件和开源社区软件在本地部署:

  1. DeepSeek-Infer Demo:我们提供了一个简单且轻量的演示,支持 FP8 和 BF16 推理。
  2. SGLang:完全支持 DeepSeek-V3 模型,支持 BF16 和 FP8 推理模式,且多 token 预测 即将推出。
  3. LMDeploy:支持本地和云部署的高效 FP8 和 BF16 推理。
  4. TensorRT-LLM:目前支持 BF16 推理和 INT4/8 量化,FP8 支持即将推出。
  5. vLLM:支持 DeepSeek-V3 模型,支持 FP8 和 BF16 模式的张量并行和流水线并行。
  6. AMD GPU:通过 SGLang 在 AMD GPU 上运行 DeepSeek-V3 模型,支持 BF16 和 FP8 模式。
  7. 华为 Ascend NPU:支持在华为 Ascend 设备上运行 DeepSeek-V3。

由于 FP8 训练已在我们的框架中原生采用,因此我们仅提供 FP8 权重。如果需要 BF16 权重进行实验,您可以使用提供的转换脚本进行转换。

以下是将 FP8 权重转换为 BF16 的示例:

cd inference
python fp8_cast_bf16.py --input-fp8-hf-path /path/to/fp8_weights --output-bf16-hf-path /path/to/bf16_weights

[!NOTE]
Hugging Face 的 Transformers 目前尚不直接支持。

6.1 使用 DeepSeek-Infer 演示进行推理(仅为示例)

系统要求

[!NOTE]
仅支持 Linux 和 Python 3.10,Mac 和 Windows 不支持。

依赖项:

torch==2.4.1
triton==3.0.0
transformers==4.46.3
safetensors==0.4.5
模型权重和演示代码准备

首先,克隆我们的 DeepSeek-V3 GitHub 仓库:

git clone https://github.com/deepseek-ai/DeepSeek-V3.git

进入 inference 文件夹并安装 requirements.txt 中列出的依赖项。最简单的方式是使用 condauv 等包管理工具创建新的虚拟环境并安装依赖。

cd DeepSeek-V3/inference
pip install -r requirements.txt

从 Hugging Face 下载模型权重,并将其放入 /path/to/DeepSeek-V3 文件夹中。

模型权重转换

将 Hugging Face 模型权重转换为特定格式:

python convert.py --hf-ckpt-path /path/to/DeepSeek-V3 --save-path /path/to/DeepSeek-V3-Demo --n-experts 256 --model-parallel 16
运行

然后您可以与 DeepSeek-V3 进行对话:

torchrun --nnodes 2 --nproc-per-node 8 --node-rank $RANK --master-addr $ADDR generate.py --ckpt-path /path/to/DeepSeek-V3-Demo --config configs/config_671B.json --interactive --temperature 0.7 --max-new-tokens 200

或批量推理给定的文件:

torchrun --nnodes 2 --nproc-per-node 8 --node-rank $RANK --master-addr $ADDR generate.py --ckpt-path /path/to/DeepSeek-V3-Demo --config configs/config_671B.json --input-file $FILE

6.2 使用 SGLang 进行推理(推荐)

SGLang 目前支持 MLA 优化,DP Attention,FP8(W8A8),FP8 KV 缓存和 Torch Compile,提供了业内领先的延迟和吞吐量性能。

特别是,SGLang v0.4.1 完全支持在 NVIDIA 和 AMD GPU 上运行 DeepSeek-V3,使其成为一个高度通用且强大的解决方案。

SGLang 还支持 多节点张量并行,使您能够在多台网络连接的机器上运行此模型。

多 token 预测(MTP)正在开发中,进展可以通过 优化计划进行跟踪。

以下是 SGLang 团队提供的启动说明:https://github.com/sgl-project/sglang/tree/main/benchmark/deepseek_v3

6.3 使用 LMDeploy 进行推理(推荐)

LMDeploy,一个灵活且高效的推理和服务框架,现已支持 DeepSeek-V3。它提供了离线管道处理和在线部署功能,能够无缝集成 PyTorch 基础的工作流。

有关如何使用 LMDeploy 运行 DeepSeek-V3 的详细步骤,请参阅:https://github.com/InternLM/lmdeploy/issues/2960

6.4 使用 TRT-LLM 进行推理(推荐)

TensorRT-LLM 现在支持 DeepSeek-V3 模型,提供 BF16 和 INT4/INT8 权重选项。目前 FP8 支持正在进行中,将很快发布。您可以通过以下链接访问专为 DeepSeek-V3 支持的 TRTLLM 自定义分支,直接体验新功能:https://github.com/NVIDIA/TensorRT-LLM/tree/deepseek/examples/deepseek_v3

6.5 使用 vLLM 进行推理(推荐)

vLLM v0.6.6 支持在 NVIDIA 和 AMD GPU 上运行 DeepSeek-V3 推理,支持 FP8 和 BF16 模式。除了标准技术,vLLM 还提供了 流水线并行,使您能够在多台通过网络连接的机器上运行此模型。有关详细指导,请参阅 vLLM 指南。您还可以关注 增强计划。

6.6 使用 AMD GPU 进行推理(推荐)

与 AMD 团队的合作使我们实现了对 AMD GPU 的首日支持,完全兼容 FP8 和 BF16 精度。有关详细指导,请参阅 SGLang 指南。

6.7 使用华为 Ascend NPU 进行推理(推荐)

华为 Ascend 社区的 MindIE 框架已成功适配 DeepSeek-V3 的 BF16 版本。有关 Ascend NPU 的逐步指导,请参阅 此处的说明。

7. 许可

此代码库采用 MIT 许可协议。DeepSeek-V3 Base/Chat 模型的使用受 模型许可协议 的约束。DeepSeek-V3 系列(包括 Base 和 Chat)支持商业用途。

8. 引用

@misc{deepseekai2024deepseekv3technicalreport,title={DeepSeek-V3 Technical Report}, author={DeepSeek-AI and Aixin Liu and Bei Feng and Bing Xue and Bingxuan Wang and Bochao Wu and Chengda Lu and Chenggang Zhao and Chengqi Deng and Chenyu Zhang and Chong Ruan and Damai Dai and Daya Guo and Dejian Yang and Deli Chen and Dongjie Ji and Erhang Li and Fangyun Lin and Fucong Dai and Fuli Luo and Guangbo Hao and Guanting Chen and Guowei Li and H. Zhang and Han Bao and Hanwei Xu and Haocheng Wang and Haowei Zhang and Honghui Ding and Huajian Xin and Huazuo Gao and Hui Li and Hui Qu and J. L. Cai and Jian Liang and Jianzhong Guo and Jiaqi Ni and Jiashi Li and Jiawei Wang and Jin Chen and Jingchang Chen and Jingyang Yuan and Junjie Qiu and Junlong Li and Junxiao Song and Kai Dong and Kai Hu and Kaige Gao and Kang Guan and Kexin Huang and Kuai Yu and Lean Wang and Lecong Zhang and Lei Xu and Leyi Xia and Liang Zhao and Litong Wang and Liyue Zhang and Meng Li and Miaojun Wang and Mingchuan Zhang and Minghua Zhang and Minghui Tang and Mingming Li and Ning Tian and Panpan Huang and Peiyi Wang and Peng Zhang and Qiancheng Wang and Qihao Zhu and Qinyu Chen and Qiushi Du and R. J. Chen and R. L. Jin and Ruiqi Ge and Ruisong Zhang and Ruizhe Pan and Runji Wang and Runxin Xu and Ruoyu Zhang and Ruyi Chen and S. S. Li and Shanghao Lu and Shangyan Zhou and Shanhuang Chen and Shaoqing Wu and Shengfeng Ye and Shengfeng Ye and Shirong Ma and Shiyu Wang and Shuang Zhou and Shuiping Yu and Shunfeng Zhou and Shuting Pan and T. Wang and Tao Yun and Tian Pei and Tianyu Sun and W. L. Xiao and Wangding Zeng and Wanjia Zhao and Wei An and Wen Liu and Wenfeng Liang and Wenjun Gao and Wenqin Yu and Wentao Zhang and X. Q. Li and Xiangyue Jin and Xianzu Wang and Xiao Bi and Xiaodong Liu and Xiaohan Wang and Xiaojin Shen and Xiaokang Chen and Xiaokang Zhang and Xiaosha Chen and Xiaotao Nie and Xiaowen Sun and Xiaoxiang Wang and Xin Cheng and Xin Liu and Xin Xie and Xingchao Liu and Xingkai Yu and Xinnan Song and Xinxia Shan and Xinyi Zhou and Xinyu Yang and Xinyuan Li and Xuecheng Su and Xuheng Lin and Y. K. Li and Y. Q. Wang and Y. X. Wei and Y. X. Zhu and Yang Zhang and Yanhong Xu and Yanhong Xu and Yanping Huang and Yao Li and Yao Zhao and Yaofeng Sun and Yaohui Li and Yaohui Wang and Yi Yu and Yi Zheng and Yichao Zhang and Yifan Shi and Yiliang Xiong and Ying He and Ying Tang and Yishi Piao and Yisong Wang and Yixuan Tan and Yiyang Ma and Yiyuan Liu and Yongqiang Guo and Yu Wu and Yuan Ou and Yuchen Zhu and Yuduan Wang and Yue Gong and Yuheng Zou and Yujia He and Yukun Zha and Yunfan Xiong and Yunxian Ma and Yuting Yan and Yuxiang Luo and Yuxiang You and Yuxuan Liu and Yuyang Zhou and Z. F. Wu and Z. Z. Ren and Zehui Ren and Zhangli Sha and Zhe Fu and Zhean Xu and Zhen Huang and Zhen Zhang and Zhenda Xie and Zhengyan Zhang and Zhewen Hao and Zhibin Gou and Zhicheng Ma and Zhigang Yan and Zhihong Shao and Zhipeng Xu and Zhiyu Wu and Zhongyu Zhang and Zhuoshu Li and Zihui Gu and Zijia Zhu and Zijun Liu and Zilin Li and Ziwei Xie and Ziyang Song and Ziyi Gao and Zizheng Pan},year={2024},eprint={2412.19437},archivePrefix={arXiv},primaryClass={cs.CL},url={https://arxiv.org/abs/2412.19437}, 
}

9. 联系方式

如果您有任何问题,请提交问题或通过 service@deepseek.com 联系我们。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/68805.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

深度学习深度解析:从基础到前沿

引言 深度学习作为人工智能的一个重要分支,通过模拟人脑的神经网络结构来进行数据分析和模式识别。它在图像识别、自然语言处理、语音识别等领域取得了显著成果。本文将深入探讨深度学习的基础知识、主要模型架构以及当前的研究热点和发展趋势。 基础概念与数学原理…

如何实现滑动列表功能

文章目录 1 概念介绍2 使用方法3 示例代码 我们在上一章回中介绍了沉浸式状态栏相关的内容,本章回中将介绍SliverList组件.闲话休提,让我们一起Talk Flutter吧。 1 概念介绍 我们在这里介绍的SliverList组件是一种列表类组件,类似我们之前介…

OpenEuler学习笔记(十七):OpenEuler搭建Redis高可用生产环境

在OpenEuler上搭建Redis高可用生产环境,通常可以采用Redis Sentinel或Redis Cluster两种方式,以下分别介绍两种方式的搭建步骤: 基于Redis Sentinel的高可用环境搭建 安装Redis 配置软件源:可以使用OpenEuler的默认软件源&#…

前沿课题推荐:提升水下导航精度的多源数据融合与算法研究

随着海洋探测技术的迅猛发展,水下地形匹配导航逐渐成为国际研究的热点领域。在全球范围内,水下导航技术的精确性对于科学探索、资源勘探及国防安全等方面都至关重要。我国在这一领域的研究与应用需求日益增长,亟需通过先进的技术手段提升水下…

浅析CDN安全策略防范

CDN(内容分发网络)信息安全策略是保障内容分发网络在提供高效服务的同时,确保数据传输安全、防止恶意攻击和保护用户隐私的重要手段。以下从多个方面详细介绍CDN的信息安全策略: 1. 数据加密 数据加密是CDN信息安全策略的核心之…

three.js+WebGL踩坑经验合集(6.1):负缩放,负定矩阵和行列式的关系(2D版本)

春节忙完一轮,总算可以继续来写博客了。希望在春节假期结束之前能多更新几篇。 这一篇会偏理论多一点。笔者本没打算在这一系列里面重点讲理论,所以像相机矩阵推导这种网上已经很多优质文章的内容,笔者就一笔带过。 然而关于负缩放&#xf…

HTB:Administrator[WriteUP]

目录 连接至HTB服务器并启动靶机 信息收集 使用rustscan对靶机TCP端口进行开放扫描 将靶机TCP开放端口号提取并保存 使用nmap对靶机TCP开放端口进行脚本、服务扫描 使用nmap对靶机TCP开放端口进行漏洞、系统扫描 使用nmap对靶机常用UDP端口进行开放扫描 使用nmap对靶机…

一文讲解JVM中的G1垃圾收集器

接上一篇博文,这篇博文讲下JVM中的G1垃圾收集器 G1在JDK1.7时引入,在JDK9时取代了CMS成为默认的垃圾收集器; G1把Java堆划分为多个大小相等的独立区域Region,每个区域都可以扮演新生代(Eden和Survivor)或老…

力扣第149场双周赛

文章目录 题目总览题目详解找到字符串中合法的相邻数字重新安排会议得到最多空余时间I3440.重新安排会议得到最多空余时间II 第149场双周赛 题目总览 找到字符串中合法的相邻数字 重新安排会议得到最多空余时间I 重新安排会议得到最多空余时间II 变成好标题的最少代价 题目…

25届 信息安全领域毕业设计选题88例:前沿课题

目录 前言 毕设选题 开题指导建议 更多精选选题 选题帮助 最后 前言 大家好,这里是海浪学长毕设专题! 大四是整个大学期间最忙碌的时光,一边要忙着准备考研、考公、考教资或者实习为毕业后面临的升学就业做准备,一边要为毕业设计耗费大量精力。学长给大家整理…

【算法设计与分析】实验6:n皇后问题的回溯法设计与求解

目录 一、实验目的 二、实验环境 三、实验内容 四、核心代码 五、记录与处理 六、思考与总结 七、完整报告和成果文件提取链接 一、实验目的 针对n皇后问题开展分析、建模、评价,算法设计与优化,并进行编码实践。 掌握回溯法求解问题的思想&#…

如何为用户设置密码

[rootxxx ~]# passwd aa #交互式的为用户设置密码 或者 [rootxxx ~]# echo 123 | passwd --stdin aa #不交互式的为用户设置密码 (适用于批量的为用户更改密码,比如一次性为100个用户初始化密码)

【Vaadin flow 实战】第5讲-使用常用UI组件绘制页面元素

vaadin flow官方提供的UI组件文档地址是 https://vaadin.com/docs/latest/components这里,我简单实战了官方提供的一些免费的UI组件,使用案例如下: Accordion 手风琴 Accordion 手风琴效果组件 Accordion 手风琴-测试案例代码 Slf4j PageT…

深入理解Java引用传递

先看一段代码: public static void add(String a) {a "new";System.out.println("add: " a); // 输出内容:add: new}public static void main(String[] args) {String a null;add(a);System.out.println("main: " a);…

Elasticsearch的开发工具(Dev Tools)

目录 说明1. **Console**2. **Search Profiler**3. **Grok Debugger**4. **Painless Lab**总结 说明 Elasticsearch的开发工具(Dev Tools)在Kibana中提供了多种功能强大的工具,用于调试、优化和测试Elasticsearch查询和脚本。以下是关于Cons…

【机器学习】自定义数据集 使用scikit-learn中svm的包实现svm分类

一、支持向量机(support vector machines. ,SVM)概念 1. SVM 绪论 支持向量机(SVM)的核心思想是找到一个最优的超平面,将不同类别的数据点分开。SVM 的关键特点包括: ① 分类与回归: SVM 可以用于分类&a…

C++并行化编程

C并行化编程 C 简介 C 是一种静态类型的、编译式的、通用的、大小写敏感的、不规则的编程语言,支持过程化编程、面向对象编程和泛型编程。 C 被认为是一种中级语言,它综合了高级语言和低级语言的特点。 C 是由 Bjarne Stroustrup 于 1979 年在新泽西州美…

记6(人工神经网络

目录 1、M-P神经元2、感知机3、Delta法则4、前馈型神经网络(Feedforward Neural Networks)5、鸢尾花数据集——单层前馈型神经网络:6、多层神经网络:增加隐含层7、实现异或运算(01、10为1,00、11为0)8、线性…

网工_HDLC协议

2025.01.25:网工老姜学习笔记 第9节 HDLC协议 9.1 HDLC高级数据链路控制9.2 HDLC帧格式(*控制字段)9.2.1 信息帧(承载用户数据,0开头)9.2.2 监督帧(帮助信息可靠传输,10开头&#xf…

CSS(快速入门)

欢迎大家来到我的博客~欢迎大家对我的博客提出指导,有错误的地方会改进的哦~点击这里了解更多内容 目录 一、什么是CSS?二、基本语法规范三、CSS选择器3.1 标签选择器3.2 id选择器3.3 class选择器3.4 通配符选择器3.5 复合选择器 四、常用CSS样式4.1 color4.2 font…