three.js+WebGL踩坑经验合集(6.1):负缩放,负定矩阵和行列式的关系(2D版本)

春节忙完一轮,总算可以继续来写博客了。希望在春节假期结束之前能多更新几篇。

这一篇会偏理论多一点。笔者本没打算在这一系列里面重点讲理论,所以像相机矩阵推导这种网上已经很多优质文章的内容,笔者就一笔带过。

然而关于负缩放,笔者未能找到从正负缩放到行列式正负的完整推导过程(可能是笔者没用对关键词吧,GPT也还没去用),中途也就找到了一个正/负定矩阵的概念。该说法已经有点正负缩放的意思了,所以本篇虽然侧重理论,但也会结合第5篇的坑进行阐述。

回顾第5篇

(5.2):THREE.Mesh和THREE.Line2在镜像处理上的区别

笔者在排查Line2镜像丢失的bug时,发现了three.js处理正反面的逻辑,它对接原生WebGL的正反面定义——三角面3个点的绕序(顺逆时针)。

three.js的实现机制是,如果物体的变换矩阵的秩(行列式)为负数,则指示物体做了带有负缩放矩阵的变换,就把逆时针旋转的三角面从背面改为正面。

从这一过程可以发现,对一个三角面应用负缩放时,其三个点的绕序会发生变化,而正缩放则不会。而一个缩放的正负,three.js是通过矩阵的秩进行判断的。

这里笔者再多嘴一下,如果矩阵的秩等于0,那么它就会把三角面的三个点变换到在同一直线上,或者会让两个或者3个点完全重合。笔者姑且称之为零定矩阵。与此同时,它也是个不可逆的矩阵。

本篇我们先拿2D的3*3矩阵来探讨行列式的正负对三点绕序的影响。3D的情况比较复杂,因为它涉及到不同轴的情况,笔者有很长一段时间以为3D无法定义负矩阵,直到研读了three.js的代码才恍然大悟。

推导过程有点繁琐,此处先给结论:矩阵缩放的正负,正负定矩阵,行列式的正负性这3者完全等价,正定矩阵不改变绕序,负定矩阵改变,零定矩阵是不可逆矩阵,它会让不共线的点变成共线甚至重合。

好,下面进入正题。

给定2D上的3个不共线的点O(x0, y0),A(x1,y1),B(x2,y2),要判断这3个点的绕序,可以作向量OA,OB,然后通过计算这两个2D向量的叉乘值得出。如下图所示,OA旋转到OB是顺时针。

对这3个点应用正定矩阵,对应两向量的叉乘结果不变,而应用负定矩阵,则叉乘结果改变,如下图所示。

然后我们给定一个3*3的2D变换矩阵(不管是2D点还是3D点,矩阵的阶数都比点的维数多1,目的是加法和乘法合并,前面讲过比较多次了,此处不再重复,实在不懂可以问我)。

对一个2D点应用矩阵,运算过程如下:

可见通过给点的最后一行补1,最后一列就实现了加法。

由于此处只研究2D点的绕序问题,因此最后一行的结果我们无需关注,在此场景它只为了让矩阵乘法计算可以正常进行。

下面我们的推导过程将分以下几步:

1 计算OA,OB向量及它们的叉乘值c

2 计算点O,A,B应用矩阵后的结果O',A',B'

3 计算向量O'A',O'B'以及它们的叉乘值c'

4 考察c和c'符号的一致性,并给出一致性跟矩阵元素的关系

5 上述关系对应到行列式上验证上面给出的结论

OA和OB是(x1-x0,y1-y0),以及(x2-x0, y2-y0),为了书写简便,后面会把x1-x0记为Δx1,y1-y0记为Δy1,其它类似。

两向量(x1,y1),(x2,y2)的2D叉乘公式为x1*y2-x2*y1,所以OA和OB的叉乘结果为

至此,第一步计算完成。

第二步,计算矩阵变换后的O,A,B,如上所述,其结果为

第三步,计算O'A',O'B'和他们俩的叉乘值

类似地有

然后叉乘值为

这个推导过程可能会让对数学不敏感的小伙伴们感到蛋疼,所以笔者曾经考虑过要不要牺牲一定的严谨性,拿个特殊点,简单点的变量来做演示。如果实在看不下去,小伙伴们可以让O=(0,0),A=(1,0),B=(0,1)来演算一遍,找下感觉。对于2D来说,拿特殊点是没有任何毛病的,除非你拿了重合的点或者共线的3点。

我们对照下OA和OB的叉乘,以及O'A'和O'B的叉乘,后者等于前者乘以(m11m22-m22*m11), 因此判断向量变换前叉积符号的一致性,只需要判断m11m22-m22*m11的符号即可。可见,矩阵对不共线3点绕序的影响仅跟矩阵的4个元素有关,而跟你的取点无关。

现在我们把刚才说到的矩阵搬过来,看看它跟行列式的关系。

发现计算结果只取了3*3矩阵中的前面两阶的元素做了一个行列式的计算。而第三列中的元素,因为它只管平移,并且跟点坐标无关,所以它在计算向量的时候就已经被消去了。至于第三行,因为它是为了将加法和乘法合并,不是本文的关注点,所以全程我们都没有让它参与到计算当中。

然而three.js自带的Matrix3类,它的行列式值则是严格按照数学的定义,按3阶行列式来书写:

那为什么我们在使用的过程中没有出现任何问题呢?我们把刚才3*3矩阵乘以点的计算公式拿过来。

为了让点变换的过程中,为合并而补充的那个1保持不变,我们应该让第三行的计算结果

m31*x+m32*y+m33恒等于1,因此结果不能受x和y影响,所以m31和m32要等于0,而剩下的m33,自然就等于1了。也就是说,这一行填充的是单位矩阵的数值。

熟悉行列式运算法则的小伙伴应该一眼就看得出来,用到第三列元素的项都要跟0相乘,否则就是跟1相乘。但为了照顾更多的小伙伴,笔者也按3阶行列式的定义演算一遍。

可见,用单位矩阵填充第3行以后,其行列式的值跟2阶行列式出来的结果完全一致,证毕。

这里需要注意的一点是,three.js的Matrix3允许第三行不使用单位矩阵的数值。这时候,它的行列式符号不能在2D变换的场景下判断矩阵的正负性。

推导完成了,来小结一下(注意以下结论均建立在Matrix3做2D变换的场景):

1 正负缩放矩阵,正负定矩阵,行列式正负完全等价(此外还有零的情况)

2 正负矩阵的性质:不共线的3个2D点,正矩阵不会修改它们的绕序,负矩阵会

3 three.js利用这一性质,根据WebGL正反面的规则修复单面材质镜像后不能正确显示的问题

4 零矩阵会使它们共线或者共点,且不可逆

5 判断一个矩阵的正负,用的是3*3矩阵前两行两列所构成的行列式的符号。若想对齐到3阶矩阵,则第三行必须按照单位矩阵进行填充,否则会出现错误的结果

现在我们来简单聊聊3D,为什么前面说3D比2D复杂。

大家脑补一下,我们给2D点直接加上z坐标,全部设置为0。如果我们应用x方向负缩放或者y方向负缩放的话,那么应用前面的结论一点毛病都没有,但若应用z负缩放,则所有的点都不会有任何变化,哪怕你不设置为0,只要z值完全一样,那翻转后,也就是z值统一改成一样的数字,但这时候,其实正反面已经颠倒了。

就这么一个简单的情况,本文的结论就已经无法应用到3D上了,所以今天我们就先到这里,后面我会跟大家继续探讨3D矩阵的正负缩放问题,敬请期待!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/68797.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

HTB:Administrator[WriteUP]

目录 连接至HTB服务器并启动靶机 信息收集 使用rustscan对靶机TCP端口进行开放扫描 将靶机TCP开放端口号提取并保存 使用nmap对靶机TCP开放端口进行脚本、服务扫描 使用nmap对靶机TCP开放端口进行漏洞、系统扫描 使用nmap对靶机常用UDP端口进行开放扫描 使用nmap对靶机…

一文讲解JVM中的G1垃圾收集器

接上一篇博文,这篇博文讲下JVM中的G1垃圾收集器 G1在JDK1.7时引入,在JDK9时取代了CMS成为默认的垃圾收集器; G1把Java堆划分为多个大小相等的独立区域Region,每个区域都可以扮演新生代(Eden和Survivor)或老…

力扣第149场双周赛

文章目录 题目总览题目详解找到字符串中合法的相邻数字重新安排会议得到最多空余时间I3440.重新安排会议得到最多空余时间II 第149场双周赛 题目总览 找到字符串中合法的相邻数字 重新安排会议得到最多空余时间I 重新安排会议得到最多空余时间II 变成好标题的最少代价 题目…

25届 信息安全领域毕业设计选题88例:前沿课题

目录 前言 毕设选题 开题指导建议 更多精选选题 选题帮助 最后 前言 大家好,这里是海浪学长毕设专题! 大四是整个大学期间最忙碌的时光,一边要忙着准备考研、考公、考教资或者实习为毕业后面临的升学就业做准备,一边要为毕业设计耗费大量精力。学长给大家整理…

【算法设计与分析】实验6:n皇后问题的回溯法设计与求解

目录 一、实验目的 二、实验环境 三、实验内容 四、核心代码 五、记录与处理 六、思考与总结 七、完整报告和成果文件提取链接 一、实验目的 针对n皇后问题开展分析、建模、评价,算法设计与优化,并进行编码实践。 掌握回溯法求解问题的思想&#…

如何为用户设置密码

[rootxxx ~]# passwd aa #交互式的为用户设置密码 或者 [rootxxx ~]# echo 123 | passwd --stdin aa #不交互式的为用户设置密码 (适用于批量的为用户更改密码,比如一次性为100个用户初始化密码)

【Vaadin flow 实战】第5讲-使用常用UI组件绘制页面元素

vaadin flow官方提供的UI组件文档地址是 https://vaadin.com/docs/latest/components这里,我简单实战了官方提供的一些免费的UI组件,使用案例如下: Accordion 手风琴 Accordion 手风琴效果组件 Accordion 手风琴-测试案例代码 Slf4j PageT…

深入理解Java引用传递

先看一段代码: public static void add(String a) {a "new";System.out.println("add: " a); // 输出内容:add: new}public static void main(String[] args) {String a null;add(a);System.out.println("main: " a);…

Elasticsearch的开发工具(Dev Tools)

目录 说明1. **Console**2. **Search Profiler**3. **Grok Debugger**4. **Painless Lab**总结 说明 Elasticsearch的开发工具(Dev Tools)在Kibana中提供了多种功能强大的工具,用于调试、优化和测试Elasticsearch查询和脚本。以下是关于Cons…

【机器学习】自定义数据集 使用scikit-learn中svm的包实现svm分类

一、支持向量机(support vector machines. ,SVM)概念 1. SVM 绪论 支持向量机(SVM)的核心思想是找到一个最优的超平面,将不同类别的数据点分开。SVM 的关键特点包括: ① 分类与回归: SVM 可以用于分类&a…

C++并行化编程

C并行化编程 C 简介 C 是一种静态类型的、编译式的、通用的、大小写敏感的、不规则的编程语言,支持过程化编程、面向对象编程和泛型编程。 C 被认为是一种中级语言,它综合了高级语言和低级语言的特点。 C 是由 Bjarne Stroustrup 于 1979 年在新泽西州美…

记6(人工神经网络

目录 1、M-P神经元2、感知机3、Delta法则4、前馈型神经网络(Feedforward Neural Networks)5、鸢尾花数据集——单层前馈型神经网络:6、多层神经网络:增加隐含层7、实现异或运算(01、10为1,00、11为0)8、线性…

网工_HDLC协议

2025.01.25:网工老姜学习笔记 第9节 HDLC协议 9.1 HDLC高级数据链路控制9.2 HDLC帧格式(*控制字段)9.2.1 信息帧(承载用户数据,0开头)9.2.2 监督帧(帮助信息可靠传输,10开头&#xf…

CSS(快速入门)

欢迎大家来到我的博客~欢迎大家对我的博客提出指导,有错误的地方会改进的哦~点击这里了解更多内容 目录 一、什么是CSS?二、基本语法规范三、CSS选择器3.1 标签选择器3.2 id选择器3.3 class选择器3.4 通配符选择器3.5 复合选择器 四、常用CSS样式4.1 color4.2 font…

3.Spring-事务

一、隔离级别: 脏读: 一个事务访问到另外一个事务未提交的数据。 不可重复读: 事务内多次查询相同条件返回的结果不同。 幻读: 一个事务在前后两次查询同一个范围的时候,后一次查询看到了前一次查询没有看到的行。 二…

C++STL之stack和queue容器(详细+通俗易懂)

前言:老铁们好,笔者好久没更新STL的容器了,今天,笔者接着之前的STL容器的内容继续更新,所以今天给老铁们分享的是STL里面的栈和队列的容器的知识。 1.栈的定义 老规矩,我们先来看看C的官网对stack的介绍文档。 然后…

DNS缓存详解(DNS Cache Detailed Explanation)

DNS缓存详解 清空DNS缓存可以让网页访问更快捷。本文将从什么是DNS缓存、为什么清空DNS缓存、如何清空DNS缓存、清空DNS缓存存在的问题四个方面详细阐述DNS缓存清空的相关知识。 一、什么是DNS缓存 1、DNS缓存的定义: DNS缓存是域名系统服务在遇到DNS查询时自动…

OFDM系统仿真

1️⃣ OFDM的原理 1.1 介绍 OFDM是一种多载波调制技术,将输入数据分配到多个子载波上,每个子载波上可以独立使用 QAM、PSK 等传统调制技术进行调制。这些子载波之间互相正交,从而可以有效利用频谱并减少干扰。 1.2 OFDM的核心 多载波调制…

第11章:根据 ShuffleNet V2 迁移学习医学图像分类任务:甲状腺结节检测

目录 1. Shufflenet V2 2. 甲状腺结节检测 2.1 数据集 2.2 训练参数 2.3 训练结果 2.4 可视化网页推理 3. 下载 1. Shufflenet V2 shufflenet v2 论文中提出衡量轻量级网络的性能不能仅仅依靠FLOPs计算量,还应该多方面的考虑,例如MAC(memory acc…

网络编程套接字(中)

文章目录 🍏简单的TCP网络程序服务端创建套接字服务端绑定服务端监听服务端获取连接服务端处理请求客户端创建套接字客户端连接服务器客户端发起请求服务器测试单执行流服务器的弊端 🍐多进程版的TCP网络程序捕捉SIGCHLD信号让孙子进程提供服务 &#x1…